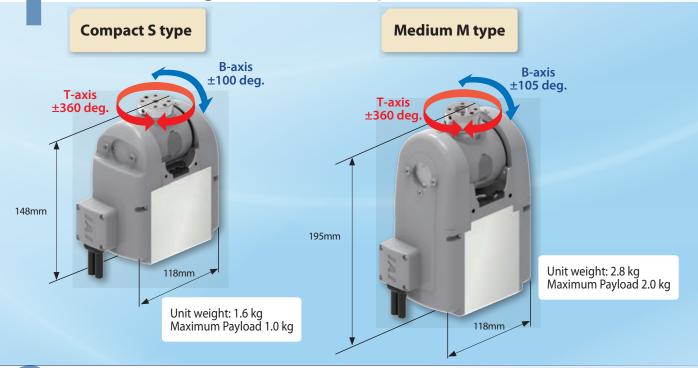


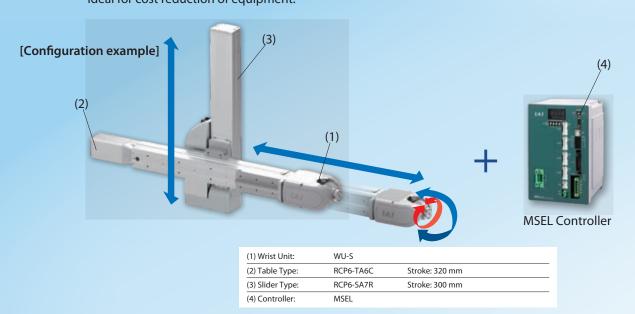
Wrist Unit WU



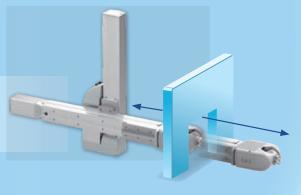
2-axis rotary joint unit

Wrist Unit is now available

IAI's unique design makes the unit light and compact.


Equipped with a Battery-less Absolute Encoder as Standard

Ideal for cost reduction of equipment. Low cost compared to 6-axis articulated robots.

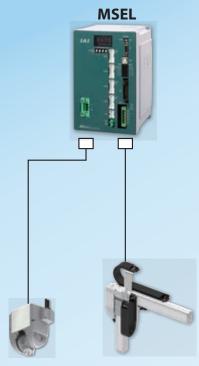

Diagonal approaches and tip swiveling, possible until now only with vertical articulated robots, can now be performed with the minimum required axis configuration.

Ideal for cost reduction of equipment.

Combination with a cartesian RoboCylinder makes it capable of avoiding obstacles and working in tight spaces.

Flexible combinations

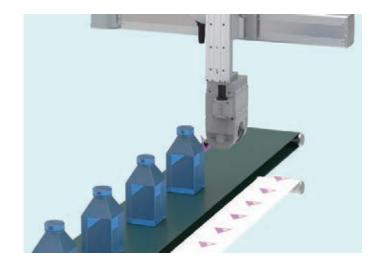
The combination pattern, number of axes and stroke can be freely selected according to the application.



Interpolation function with orthogonal axes is possible

When connecting Wrist Unit and 2-axis combination (*)

(*) Mounted pulse motor actuators


Wrist Unit Single Axis/Cartesian (for 2 axes) RoboCylinder (up to 2 axes)

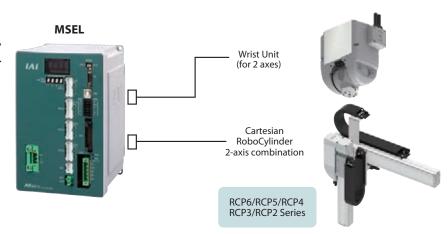
Application Examples

■ Bottle labeling equipment

This device affixes labels to bottles. Adjusts the angle to the labeling surface on the B-axis and rotates the label on the T-axis to change the orientation.

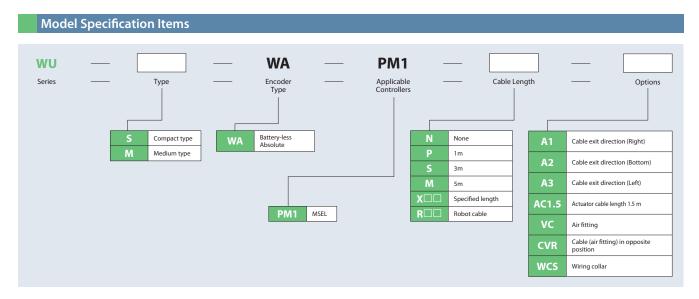
Automotive connector inspection equipment

This device inspects the external view of connectors for automobiles, using a camera.


The Wrist Unit rotates the connector for inspection from various angles.

Controller connection example

"Wrist Unit + RoboCylinder 2-axis combination" can be controlled with a single MSEL controller.


Please refer to P.17 for more information

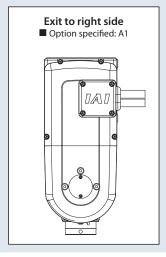
WU Series List Medium type Туре Compact type Model WU-S WU-M **External view** Axis combination B-axis (wrist swing) T-axis (wrist rotation) B-axis (wrist swing) T-axis (wrist rotation) Operation range ±100 deg. ±360 deg. ±105 deg. ±360 deg. Max. torque *1 0.65N·m 0.65N·m 1.65N·m 1.65N·m Max. allowable moment of inertia *2 0.0085kgm² 0.0075kgm² 0.015kgm² 0.0165kgm² Max. load weight 1kg 2kg Independent operation 750 deg/s 1200 deg/s 900 deg/s 1200 deg/s Simultaneous operation of the B- and T-axes Max. speed *3 600 deg/s 600 deg/s 600 deg/s 600 deg/s Without load torque *4 0.7 G (6865 deg/s²) 0.7 G (6865 deg/s²) 0.7 G (6865 deg/s²) 0.7 G (6865 deg/s²) Max. acceleration/ deceleration With load torque *4 0.3 G (2942 deg/s²) 0.3 G (2942 deg/s²) 0.3 G (2942 deg/s²) 0.3 G (2942 deg/s²) Motor type 28□ Pulse motor 28□ Pulse motor 35□ Pulse motor 35□ Pulse motor 2.8kg **Unit weight** 1.6kg Reference page P.13 P.15

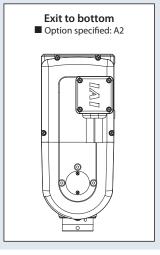
^{*4} When the rotational axes of the B-axis and T-axis are horizontal with respect to the floor surface or when the center of gravity of the transported object is offset from the rotational axis, the unit will be subject to load torque due to the weight of the object. The allowable moment of inertia decreases when load torque is present. Please refer to "Model Selection Process (P.7 on)" for more information.

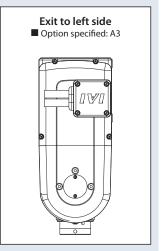
^{*1} Indicates the maximum torque at low speed. The output torque varies with the speed.

^{*2} Indicates the maximum moment of inertia in rotation. Value when the acceleration is 0.3 G.

^{*3} Maximum set speed with no load.


Options


Cable exit direction


Model A1 / A2 / A3

Description Specify when changing the actuator cable exit direction.

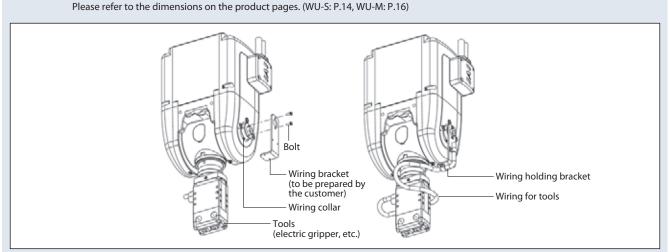
Actuator cable length 1.5 m

Model AC1.5

Description This option extends the length of the actuator cable exiting the actuator body to 1.5 m. (Standard length is 0.2 m) When this option is selected, the maximum cable length between the actuator and controller will be 18 m (X18, R18).

Air fitting

Model **VC**


Description

This option allows attachment of an air fitting (ø6) for connecting pneumatic devices such as vacuum pads to the side of the main body. It is mounted on the same side as the actuator cable outlet. Please refer to the dimensions on the product pages. (WU-S: P.14, WU-M: P.16)

Wiring collar

Model WCS

Description When using electric grippers or similar wiring is made easy by using the wiring collar. Use the wiring collar as the base to which the wiring bracket (to be prepared by the customer) is to be attached.

Cable (air fitting) in opposite position

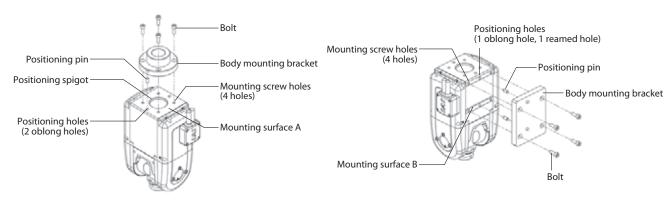
Model

CVR

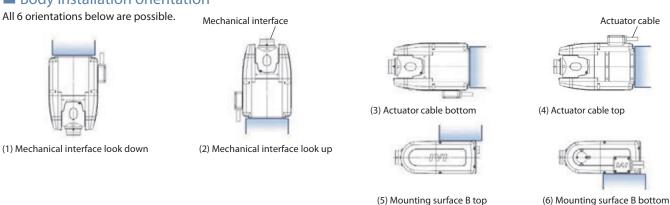
Description

This option allows the actuator cable outlet, air fitting, and wiring collar (optional) to be mounted on the other side (opposite position). Please refer to the dimensions on the product pages. (WU-S: P.14, WU-M: P.16)

Reference Data


Mounting Method

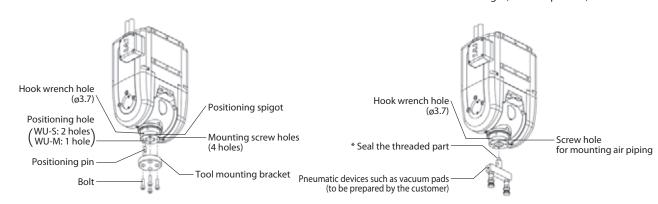
Body mounting method


The body mounting surface should be a machined surface or a plane with similar accuracy.

The actuator has screw holes and positioning holes for body mounting on the top (mounting surface A) and side (mounting surface B). For details on positions and dimensions, refer to the product pages.

(1) When using mounting surface A (Thread depth WU-S: M4 through (screw depth: 6) / WU-M: M5 through (screw depth: 10) (2) When using mounting surface B (Thread depth WU-S: M4 depth 8 / WU-M: M5 depth 10)

Body installation orientation


■ Tool mounting method

The unit has screw holes for bracket mounting to the body tip (mechanical interface), screw holes for air piping mounting, and positioning holes. Refer to the dimensions (WU-S: P.14, WU-M: P.16) for details regarding the position and dimensions. Do not apply excessive force to the output shaft when tightening bolts or air piping threads. The mechanical interface has holes for a hook wrench. Use these to fix the output shaft in the rotating direction.

(1) When using bracket mounting screws (Thread depth WU-S: M4 depth 6 / WU-M: M4 through (screw depth: 6)

(2) When using air piping mounting screws Seal the threaded part of the air piping with sealing tape, etc.

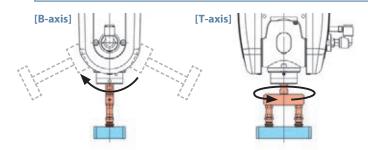
(Thread depth WU-S: M6 through (screw depth: 4.5) / WU-M: M6 through (screw depth: 4.5)

Reference Data

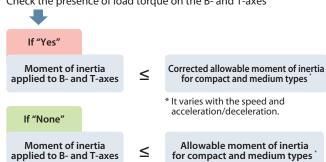
Model Selection Process

Follow steps 1 through 4. For a selection example, refer to the following pages.

Step 1


Check the weight of the transported object

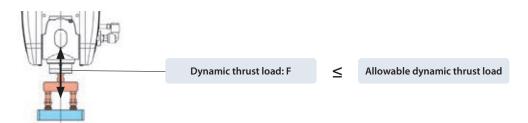
Step 2


Check the moment of inertia

The allowable moment of inertia of the Wrist Unit decreases to the extent that load torque is applied to the B- and T-axes. First, calculate the load torque and obtain the corrected allowable moment of inertia.

"Formulae for calculating moment of inertia of typical shapes" are on page 12.

Check the presence of load torque on the B- and T-axes



* It varies with the speed and acceleration/deceleration.

Step 3

Check the allowable dynamic thrust load

Make sure that the thrust load (load perpendicular to the mounting surface) does not exceed the allowable dynamic thrust load.

Step 4

Check the allowable dynamic load moment

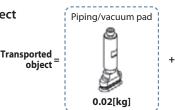
Make sure that the load moment does not exceed the allowable dynamic moment.

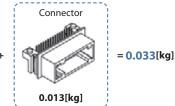
Reference Data

Model Selection Example: Automotive Connector Inspection Equipment

The model selection example given is based on the application example "Automotive connector inspection equipment" (P. 3).

Automotive connector inspection equipment Inspection camera Vacuum pad Wrist Unit Connector (workpiece)


[Overview]


This device inspects the external view of connectors for automobiles, using a camera. The Wrist Unit rotates the connector for inspection from various angles.

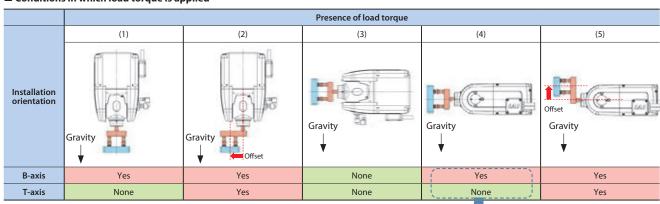
Step 1 Check the weight of the transported object

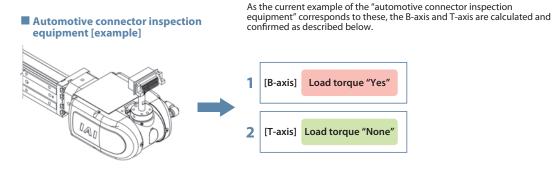
<Weight of transported object = weight of tool + weight of workpiece>

	Maximum load weight
WU-S: Compact type	1kg
WU-M: Medium type	2kg

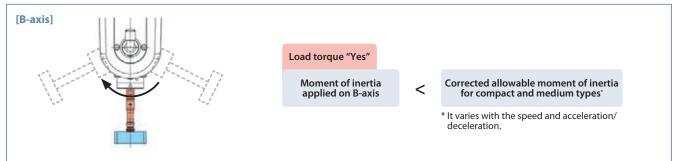


Both WU-S (compact) and WU-M (medium) can be used


Step 2 Check the moment of inertia


Check the presence of load torque on the B- and T-axes

- Calculate the load torque and obtain the corrected allowable moment of inertia. Then calculate the moment of inertia and check that it does not exceed the allowable value.
- Calculate the moment of inertia and confirm that it is less than the allowable moment of inertia.


■ Conditions in which load torque is applied

■ 1. Check B-axis

(1) Calculating load torque T₁

T_{IT}: Load torque due to tool weight [N⋅m]

Tw: Load torque due to workpiece weight [N·m]

m_T: Tool weight [kg]

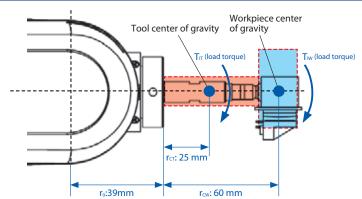
m_w: Workpiece weight [kg]

g: Acceleration of gravity [m/s²]

r₀: Mounting surface distance [mm]

rc: Tool center mass location [mm]

r_{cw}: Workpiece center mass location [mm]



 $=m_{T^{*}}g(r_{0}+r_{CT})\times 10^{-3}+m_{W^{*}}g(r_{0}+r_{CW})\times 10^{-3}$

 $=0.02\times9.8\times(39+25)\times10^{-3}+0.013\times9.8\times(39+60)\times10^{-3}$

=0.025[Nm]

Calculation result

(2) Calculating the allowable moment of inertia correction factor Cj

T_{max}: Output torque (right table) [Nm] T_i: Load torque calculation result (1)

[Operating conditions of the Wrist Unit]

B-axis rotation Speed: **600** [deg/s] Acceleration: **0.3** [G]

First, calculate with the value for the compact type (S)

$$C_{j} = \frac{T_{max} - T_{l}}{T_{max}}$$

$$= \frac{0.58 - 0.025}{0.58}$$

=0.96

Calculation result

■ Output torque by speed [Nm]

WU-S: Compact type

WO-3. Compact type				
Speed deg./s	B-axis	T-axis		
0	0.65	0.65		
150	0.65	0.65		
300	0.62	0.62		
450	0.6	0.6		
600	0.58	0.58		
750	0.52	0.52		
900	0.45	0.45		
1050	0.45	0.45		
1200	0.45	0.45		

WU-M: Medium type

Speed	B-axis	T-axis		
deg./s	D-axis			
0	1.65	1.65		
150	1.65	1.65		
300	1.65	1.65		
450	1.65	1.65		
600	1.58	1.58		
750	1.36	1.36		
900	1.14	1.14		
1050	0.96	0.96		
1200	0.79	0.79		

(3) Calculating the corrected allowable moment of inertia J_{tl}

$J_{tl}=J_{max}C_{j}$ (kgm²)

 J_{max} : Allowable moment of inertia (right table) [kgm²] C_j: Allowable moment of inertia correction factor calculation result (2)

J_{tl}=0.008×0.96

=0.0077

Calculation result

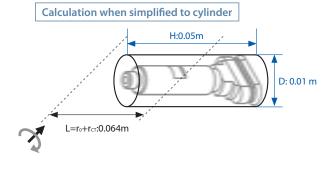
■ Allowable moment of inertia by speed/acceleration [kgm²]

WU-S: Compact type

WO-3. Compact type					
Speed	B-axis	T-axis			
Speed	Acceleration/deceleration				
deg./s	0.3G	0.3G			
0	0.008	0.0035			
150	0.008	0.0035			
300	0.008	0.0035			
450	0.008	0.0035			
600	0.008	0.0035			
750		0.0035			
900		0.0035			
1050		0.0035			
1200		0.0025			

WU-M: Medium type

Cmand	B-axis	T-axis		
Speed	Acceleration/deceleration			
deg./s	0.3G	0.3G		
0	0.0150	0.0126		
150	0.0150	0.0126		
300	0.0118	0.0072		
450	0.0055	0.0054		
600	0.0055	0.0054		
750		0.0054		
900		0.0036		
1050		0.0036		
1200		0.0036		


(4) Checking the moment of inertia of the transported object

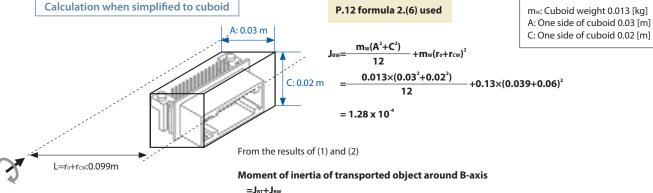
Using the Formulae for calculating moment of inertia of typical shapes (P.12), calculate the moment of inertia of the tool and workpiece to be used and make sure they do not exceed the corrected allowable moment of inertia $(4) \le (3)$ obtained in (3).

Points

Calculations can be made easier by positing simplified shapes for transported objects such as tools and workpieces.

(1) Moment of inertia of piping/vacuum pad: Jet

P.12 formula 2.(5) used

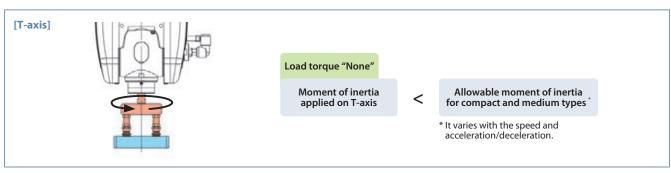

m_T: Cylinder weight 0.02 [kg] D: Cylinder diameter 0.01 [m] H: Cylinder length 0.05 (m)

$$J_{\text{BT}} = \frac{m_T(\frac{D^2}{4} + \frac{H^2}{3})}{4} + m_T(r_0 + r_{CT})^2$$

$$= \frac{0.02 \times (\frac{0.01^2}{4} + \frac{0.05^2}{3})}{4} + 0.02 \times (0.039 + 0.025)^2$$

$$= 8.62 \times 10^{-5}$$

(2) Moment of inertia of connector: JBW



 $=J_{BT}+J_{BW}$ = 8.62 x 10⁻⁵ + 1.28 x 10⁻⁴

=2.1×10⁻⁴

Usable, as it is less than the corrective allowable moment of inertia obtained in (3)

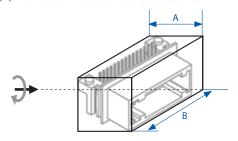
2. Checking T-axis

If load torque is not applied, using the Formulae for calculating moment of inertia of typical shapes (P.12), calculate the moment of inertia of the tool and workpiece to be used and make sure they do not exceed the corrected allowable moment of inertia.

(1) Moment of inertia of piping/vacuum pad: $J_{\tau\tau}$

P.12 formula 1.(1) used

$$J_{TT} = \frac{m_T \times D^2}{8}$$


$$= \frac{0.02 \times 0.01^2}{8}$$

$$= 2.50 \times 10^{-7}$$

m_T: Cylinder weight 0.02 [kg] D: Cylinder diameter 0.01 [m]

(2) Moment of inertia of the connector: JTW

P.12 formula 1.(3) used

$$\begin{split} J_{\text{TW}} &= \frac{m_{\text{W}}(A^2 + B^2)}{12} \\ &= \frac{0.013 \times (0.03^2 + 0.05^2)}{12} \\ &= 3.68 \times 10^6 \end{split}$$

m_w: Cuboid weight 0.013 [kg] A: One side of cuboid 0.03 [m] B: One side of cuboid 0.05 [m]

From the results of (1) and (2)

Moment of inertia of transported object around T-axis

 $=2.50\times10^{-7}+3.68\times10^{-6}$

 $=3.9\times10^{-6}[kgm^{2}]$

From the allowable moment of inertia (table below), we see that WU-S (compact) can be used

[Operating conditions of the Wrist Unit]

T-axis rotation speed: 600 [deg/s] Acceleration: 0.3 [G]

■ Allowable moment of inertia by speed/acceleration [kgm²]

WU-S: Compact type

	1 T -					
Speed	B-a	XIS	T-axis			
эрсси	Acceleration/deceleration					
deg./s	0.3G	0.7G	0.3G	0.7G		
0	0.0085	0.0065	0.0075	0.0035		
150	0.0085	0.0065	0.0075	0.0035		
300	0.0085	0.005	0.0065	0.0035		
450	0.0085 0.005		0.0065	0.0025		
600	0.0085	0.005	0.0065	0.0025		
750		0.005	0.0065	0.0025		
900			0.0065	0.0025		
1050			0.0065	0.0025		
1200			0.0065	0.0025		

WU-M: Medium type

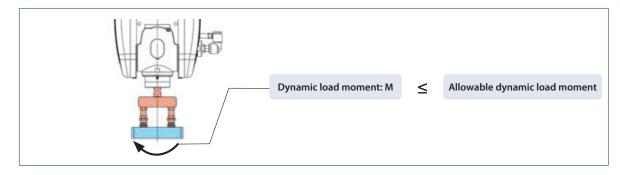
Currel	B-axis		T-axis			
Speed	Acceleration/deceleration					
deg./s	0.3G	0.7G	0.3G	0.7G		
0	0.0150	0.0145	0.0165	0.0126		
150	0.0150	0.0145	0.0165	0.0126		
300	0.0150 0.0127		0.0165	0.0090		
450	0.0099 0.0045		0.0126	0.0063		
600	0.0090	0.0036	0.0108	0.0054		
750		0.0036	0.0099	0.0054		
900		0.0036	0.0099	0.0045		
1050			0.0081	0.0045		
1200			0.0081	0.0045		

Step 3 Check the allowable dynamic thrust load

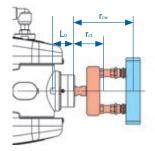
 $F=(m_T+m_W)\cdot(a+g)\cdot9.8[N]$

=0.033×1.3×9.8 =0.42[N]

m_T: Tool weight 0.02 [kg] mw: Workpiece weight 0.013 [kg] g: Acceleration of gravity 1.0 [G]


a: Travel acceleration of Z-axis 0.3 [G]

From the allowable dynamic thrust load (table below), we see that WU-S (compact) can be used


■ Allowable dynamic thrust load

	Allowable thrust load				
WU-S: Compact type	330N				
WU-M: Medium type	450N				

Step 4 Check the allowable dynamic load moment

$M=m_{\tau^*}a\cdot 9.8(L_0+r_{c\tau})\times 10^{-3}+m_{w^*}a\cdot 9.8(L_0+r_{cw})\times 10^{-3}$ [Nm]

m_T: Tool weight 0.02 [kg] mw: Workpiece weight 0.013 [kg] a: Travel acceleration of X-axis 0.3 [G] La: Load center of mass position WU-S (Compact) 17.5 [mm] WU-M (Medium) 21.5 [mm]

ra: Tool center mass location 25 [mm] rcw: Workpiece center mass location 60 [mm]

 $M=0.02\times0.3\times9.8\times(17.5+25)\times10^{-3}$

- +0.013×0.3×9.8×(17.5+60)×10⁻³
- =0.025+0.030
- =0.055 [Nm]

From the allowable dynamic moment (table below), we see that WU-S (compact) can be used

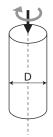
■ Allowable dynamic load moment

2. When the center of the object is offset from

	Allowable dynamic load moment				
WU-S: Compact type	1.4Nm				
WU-M: Medium type	4.2Nm				

WU-S (compact) can be used, as seen from the results of steps 1 to 4

Formulae for calculating moment of inertia of typical geometrical shapes


1. When the rotational axis passes through the center of the object

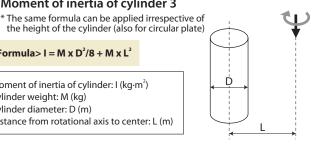
(1) Moment of inertia of cylinder 1

* The same formula can be applied irrespective of the height of the cylinder (also for circular plate)

<Formula $> I = M \times D^2/8$

Moment of inertia of cylinder: I (kg·m²) Cylinder weight: M (unit: kg) Cylinder diameter: D (m)

<Formula>I = M x D 2 /8 + M x L 2

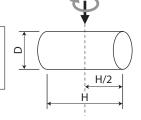

Moment of inertia of cylinder: I (kg·m²)

the rotational axis

(4) Moment of inertia of cylinder 3

Cylinder weight: M (kg) Cylinder diameter: D (m)

Distance from rotational axis to center: L (m)

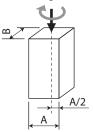


(2) Moment of inertia of cylinder 2

<Formula> I = M x (D $^{2}/4 + H^{2}/3) / 4$

Moment of inertia of cylinder: I (kg·m²) Cylinder weight: M (kg) Cylinder diameter: D (m)

Cylinder length: H (m)



(3) Moment of inertia of cuboid 1

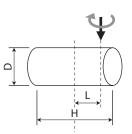
The same formula can be applied irrespective of the height of the cuboid (also for rectangular plate)

<Formula> I = M x (A 2 + B 2) / 12

Moment of inertia of cuboid: I (kg·m²) First side of cuboid: A (m) Second side of cuboid: B (m)

(5) Moment of inertia of cylinder 4

<Formula> I = M x (D $^{2}/4 + H^{2}/3) / 4 + M x L<math>^{2}$

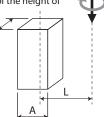

Moment of inertia of cylinder: I (kg·m²)

Cylinder weight: M (kg)

Cylinder diameter: D (m)

Cylinder length: H (m)

Distance from rotational axis to center: L (m)


(6) Moment of inertia of cuboid 2

* The same formula can be applied irrespective of the height of the cuboid (also for rectangular plate)

<Formula> I = M x (A 2 + B 2) / 12 + M x L 2

Moment of inertia of cuboid: I (kg·m²) Cuboid weight: M (kg) First side of cuboid: A (m)

Second side of cuboid: B (m) Distance from rotational axis to center: L (m)

Compact type

■ Model Specification ltems

WU

S Туре

WA Encoder Type

PM₁ Applicable Controllers

Cable Length N : None

Options

S: Compact Type

WA: Battery-less Absolute

PM1: MSEL

P:1m S:3m M:5m M:5m X = : Specified Length

R□□: Robot Cable

Refer to Options table below.

* Does not include a controller

* Please refer to P.4 for more information about the model specification items.

Please refer to P.6 for more information on the installation method and orientation.

When making a selection, it is necessary to calculate the moment of inertia of the operating conditions and to use a model that allows that moment of inertia. Calculate the moment of inertia of the transported object for the B- and T-axes respectively. Please refer to "Model Selection Process (P.7 on)" for more information.

(Note 1) Shows maximum set speed with no load.

(Note 2) When the rotational axes of the B-axis and T-axis are horizontal I when the rotational axes of the B-axis and 1-axis are norizontal with respect to the floor surface or when the center of gravity of the transported object is offset from the rotational axis, the unit will be subject to load torque due to the weight of the object. The allowable moment of inertia decreases when load torque is present. Please refer to "Model Selection Process (P.7 on)" for more information.

Actuator Specifications Max. speed (Note 1) (deg/s) Max. acceleration/deceleration (G) Operation range (deg.) Max. payload (kg) Model Axis configuration Simultaneous operation of the B- and T-axes Without load torque With load torque Independent operation B-axis (wrist swing) 0.7 G (6865 deg/s²) 0.3 G (2942 deg/s²) ±100 750 600 WU-S-WA-PM1- 1 - 2 1 T-axis (wrist rotation) 0.7 G (6865 deg/s²) 0.3 G (2942 deg/s²) ±360 1200 600 Legend: 1 Cable length 2 Options *1 G ≈ 9807 deg/s²

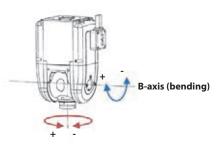
Cable Length < per axis *1

Cable Leligtii < pei axis * 1>				
Туре	Cable code			
	P (1m)			
Standard type	S (3m)			
	M (5m)			
	X06 (6m) to X10 (10m)			
Specified length	X11(11m) to X15(15m)			
	X16(16m) to X20(20m) *2			
	R01(1m) to R03(3m)			
	R04 (4m) to R05 (5m)			
Robot cable	R06 (6m) to R10 (10m)			
	R11(11m) to R15(15m)			
	R16(16m) to R20(20m) *2			

Cable b

- ect the cable length in the model name to have 2 cables attached.
- *2 When actuator cable length change "AC1.5" is selected as an option, 18 m (X18, R18) will be the maximum length.

.a	Die	petw	een	actua	itor	and	contr	oller.
1	Rec	guirec	for	hoth	B- a	and 1	-axes	Sele

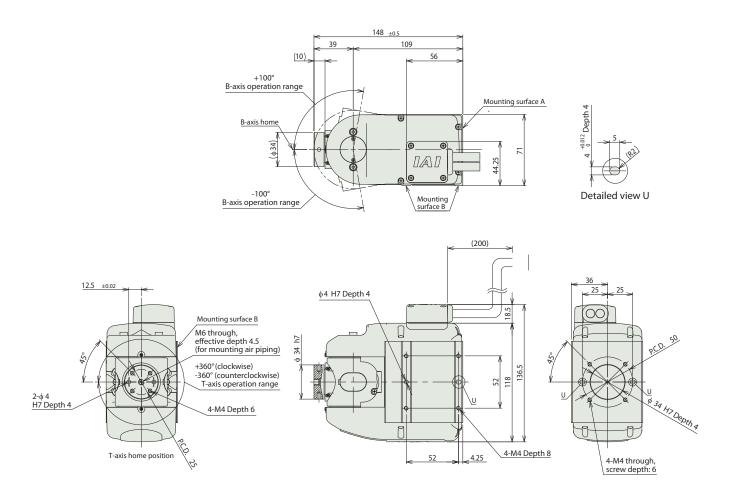

Option code	Reference page
A1	See P.5, P.14
A2	See P.5, P.14
А3	See P.5, P.14
AC1.5	See P.5, P.14
CVR	See P.5, P.14
VC	See P.5, P.14
WCS	See P.5, P.14
	A1 A2 A3 AC1.5 CVR VC

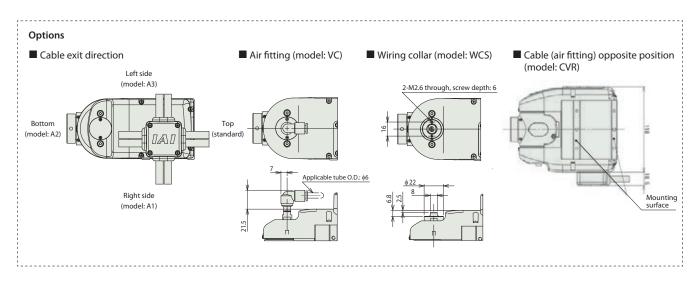
Actuator Specification

Actuator Specifications					
ltem	Description				
iteiii	B-axis (wrist swing)	T-axis (wrist rotation)			
Drive system	Pulse motor + timing belt	Pulse motor + timing belt + bevel gear			
Positioning repeatability	±0.015 deg.	±0.15 deg.			
Lost motion	0.06 degrees	0.4 degrees			
Allowable dynamic thrust load *1	330N				
Allowable dynamic load moment *1	1.4N·m				
Unit weight	1.6kg				
Brake retaining torque *2	0.96N·m	0.96N·m			
Ambient operating temperature, humidity	0~40°C, 85% RH or less (Non-condensing)				

- *1 Using the unit with a load exceeding the values above leads to reduced service life and/or damage.
- *2 Equipped with brake as standard.

Name and Coordinates of Each Axis


T-axis (turning)


Dimensions

CAD drawings can be downloaded from our website. www.robocylinder.de

Name	External view	Max. number of	Power supply		Control method				Maximum number of	Reference
	External view	connectable axes	voltage	Positioner	Pulse-train	se-train Program Network * selection			positioning points	
MSEL-PC/PG	I	4	Single phase 100 to 230 V AC	-	-	•	DeviceNet EtherCAT.	CC-Link EtherNet/IP	30000	See P.17

Battery-less Absolute

Medium type

24_v Pulse Motor

■ Model Specification ltems

WU

M Туре

M: Medium

Type

WA Encoder Type

WA: Battery-less Absolute

PM₁ Applicable Controllers

PM1:MSEL

Cable Length N : None

Options Refer to Options table below.

* Does not include a controller

* Please refer to P.4 for more information about the model specification items.

P:1m S:3m

M:5m X□□:Specified Length R□□ : Robot Cable

Please refer to P.6 for more information on the installation method and orientation.

When making a selection, it is necessary to calculate the moment of inertia of the operating conditions and to use a model that allows that moment of inertia. Calculate the moment of inertia of the transported object for the B- and T-axes respectively. Please refer to "Model Selection Process (P.7 on)" for more information.

(Note 1) Shows maximum set speed with no load.

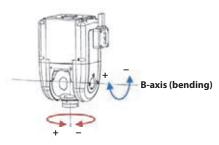
(Note 2) When the rotational axes of the B-axis and T-axis are horizontal) when the rotational axes of the B-axis and 1-axis are norizontal with respect to the floor surface or when the center of gravity of the transported object is offset from the rotational axis, the unit will be subject to load torque due to the weight of the object. The allowable moment of inertia decreases when load torque is present. Please refer to "Model Selection Process (P.7 on)" for more information.

Actuator Specifications							
		0	Max. speed	d (Note 1) (deg/s)		Max. acceleration	/deceleration (G)
Model	Axis configuration	Operation range (deg.)	Independent operation	Simultaneous operation of the B- and T-axes	Max. payload (kg)	Without load torque (Note 2)	With load torque (Note 2)
WILM WA DM1 [0] [0]	B-axis (wrist swing)	±105	900	600	2	0.7 G (6865 deg/s²)	0.3 G (2942 deg/s²)
WU-M-WA-PM1- ① - ②	T-axis (wrist rotation)	±360	1200	600	2	0.7 G (6865 deg/s²)	0.3 G (2942 deg/s²)
Legend: (1) Cable length (2) Options *1 G = 9800 deg/							

Cable Length <per axis *1>

Type	Cable code			
туре				
	P (1m)			
Standard type	S (3m)			
	M (5m)			
	X06 (6m) to X10 (10m)			
Specified length	X11(11m) to X15(15m)			
	X16 (16m) to X20 (20m) *2			
	R01(1m) to R03(3m)			
	R04(4m) to R05(5m)			
Robot cable	R06(6m) to R10(10m)			
	R11(11m) to R15(15m)			
	R16(16m) to R20(20m) *2			

- Cable between actuator and controller.
 *1 Required for both B- and T-axes. Select the cable length in the model name to have 2 cables attached.
- *2 When actuator cable length change "AC1.5" is selected as an option, 18 m (X18, R18) will be the maximum length.

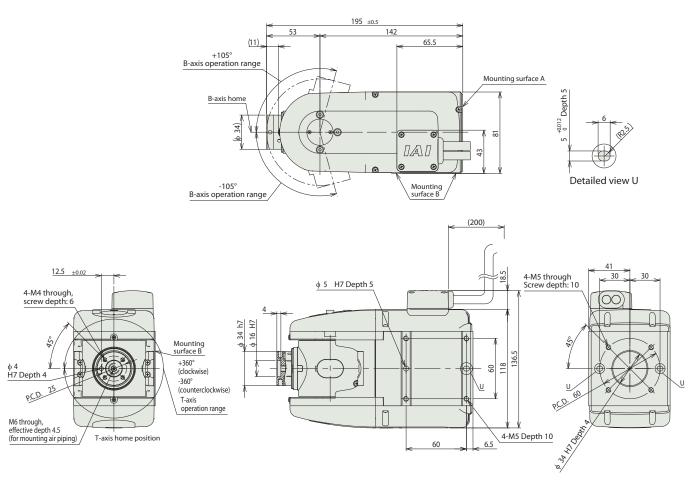

Options		
Name	Option Code	Reference page
Cable exit direction (Right)	A1	See P.5, P.16
Cable exit direction (Bottom)	A2	See P.5, P.16
Cable exit direction (Left)	А3	See P.5, P.16
Actuator cable length 1.5 m	AC1.5	See P.5, P.16
Cable (air fitting) in opposite position	CVR	See P.5, P.16
Air fitting	VC	See P.5, P.16
Wiring collar	WCS	See P.5, P.16

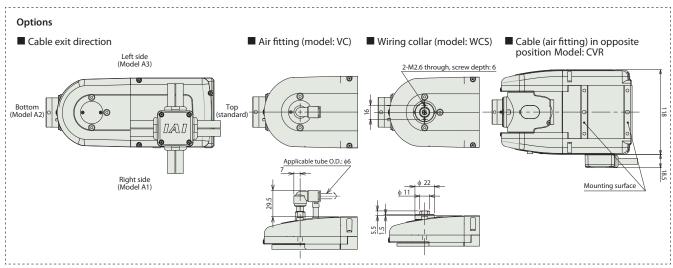
Actuator Specification

Actuator Specifications					
ltem	Description				
item	B-axis (wrist swing)	T-axis (wrist rotation)			
Drive system	Pulse motor + timing belt	Pulse motor + timing belt + bevel gear			
Positioning repeatability	±0.015 deg.	±0.15 deg.			
Lost motion	0.06 degrees	0.4 degrees			
Allowable dynamic thrust load *1	450N				
Allowable dynamic load moment *1	4.2N·m				
Unit weight	2.8	Bkg			
Brake retaining torque *2	2.8N·m	2.8N·m			
Ambient operating temperature/humidity	0~40°C, 85% RH or less (Non-condensing)				

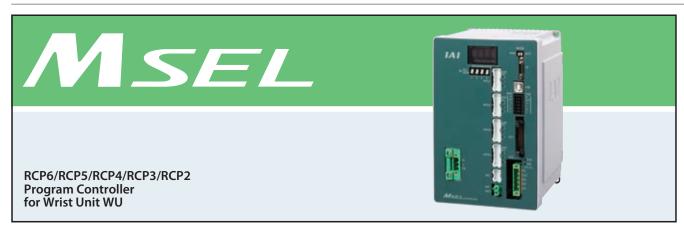
- *1 Using the unit with a load exceeding the values above leads to reduced service life and/or damage.
- *2 Equipped with brake as standard.

Name and Coordinates of Each Axis

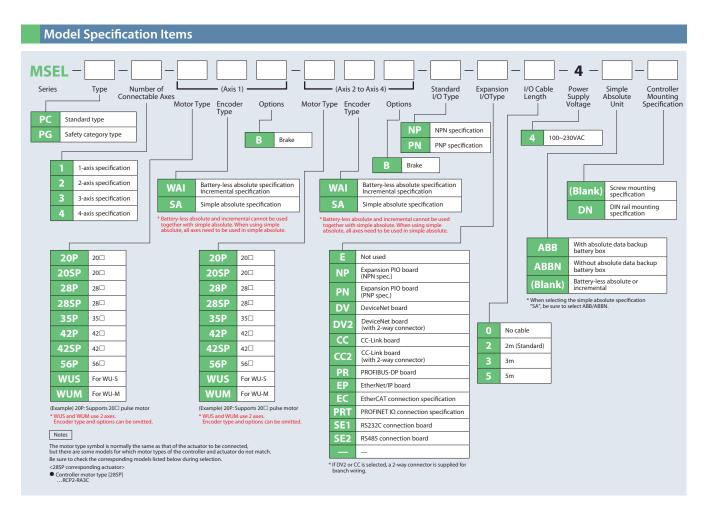

T-axis (turning)


Dimensions

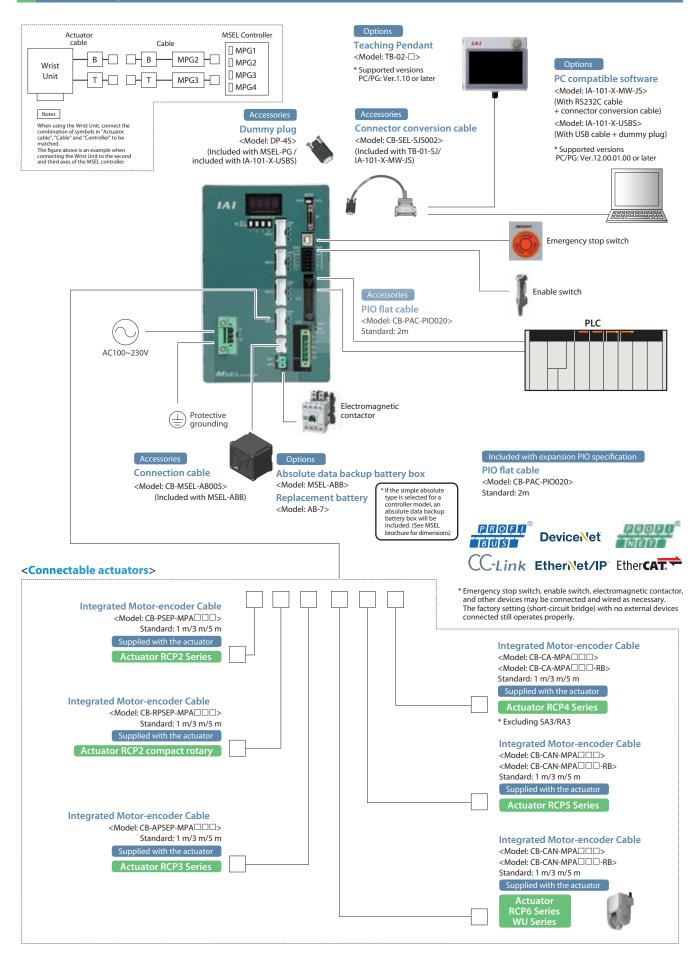
CAD drawings can be downloaded from our website. www.robocylinder.de



Name	Futavaaluiauu	Max. number of	Power supply			Control	method		Maximum number of	Referenc
Name	External view	Max. number of connectable axes	voltage	Positioner	Pulse-train	Program	Network	* selection	positioning points	
MSEL-PC/PG		4	Single phase 100 to 230 V AC	-	-	•	DeviceNet EtherCATT	CC-Link EtherNet/IP	30000	See P.1



List of Models


Program controller available for operation of RCP6/RCP5/RCP4/RCP3/RCP2 series actuators. A single unit can handle various forms of control with up to 4 axes.

Type name	PC PG			
Туре	Standard type Safety category type			
Max. number of controlled axes	4			
No. of positions	30000 points			
Power supply	Single-phase 100~230VAC			
Safety category	В	3 *1		

^{*1:} To comply with the safety category, the customer will need to install a safety circuit externally to the controller.

System Configuration

WU Wrist Unit Catalogue No. 0717-E

The information contained in this catalog is subject to change without notice for the purpose of product inprovement

IAI Industrieroboter GmbH

Ober der Röth 4 D-65824 Schwalbach / Frankfurt Germany

Phone: +49-6196-8895-0 Fax: +49-6196-8895-24 E-Mail: info@IAI-GmbH.de Internet: http://www.eu.IAI-GmbH.de

IAI America, Inc.

2690 W. 237th Street, Torrance, CA 90505, U.S.A Phone: +1-310-891-6015, Fax: +1-310-891-0815

IAI (Shanghai) Co., Ltd

Shanghai Jiahua Business Center A8-303, 808, Hongqiao Rd., Shanghai 200030, China Phone: +86-21-6448-4753, Fax: +86-21-6448-3992

IAI CORPORATION

577-1 Obane, Shimizu-Ku, Shizuoka, 424-0103 Japan Phone: +81-543-64-5105, Fax: +81-543-64-5192

IAI Robot (Thailand) Co., Ltd

825 PhairojKijja Tower 12th Floor, Bangna-Trad RD., Bangna, Bangna, Bangkok 10260, Thailand Phone: +66-2-361-4457, Fax: +66-2-361-4456