

RCS2/RCS3/Single-axis Robot/ Linear Motor Position Controller

GB

SCON-CAL, see page 16

www.intelligentactuator.de

Scon Servo Controllers Have Become Even More Advanced!

SCON controllers have been dramatically revamped with new functions.

Basic specifications

Number of positioning points: Up to 512 points Power-supply voltage types: Single-phase 115 Single phase 22

Encoder type:

Single-phase 115 VAC Single-phase 230 VAC Incremental Absolute

Increasing the actuator's load capacity with offboard tuning <Standard function>

Offboard tuning is a function to increase the acceleration/deceleration when the load mass is small, or decrease the acceleration/deceleration when the load mass is large, so that the actuator is set to operate optimally for the given load mass. For details \rightarrow P3

Correlation diagram of acceleration/deceleration and payload RCS2-SA5C 20W, lead 20 (horizontal installation) 3.5 Standard specification 3 Offboard tuning specification 2.5 [kd] 2 2 1.5 1 0.5 0.0 0.0 0.2 0.4 1.8 2.0 0.6 0.8 1.0 1.2 16 14 Acceleration/deceleration [G]

Direct connection is now possible not only to DeviceNet, CC-Link (*1) and PROFIBUS-DP, but also to MECHATROLINK, CompoNet, EtherCAT and EtherNet/ IP. The actuator can also be operated by specifying coordinate values directly via a field network. (*1) CC-Link was changed from remote I/O to remote device.

A vibration control function has been added that suppresses vibration of the work part installed on the slider when the actuator's slider moves. This function shortens the time the actuator waits for vibration to settle, and consequently shortens the cycle time.

The RCS2-RA13R comes with a force control function that allows for accurate push-motion operation by feeding back the push force using the dedicated load cell fitted on the actuator. For details \rightarrow P5

Checking when to maintain based on the total number of movements and total distance travelled <a href="https://www.standard.gov/standar

The total number of actuator movements and the total distance travelled are calculated and recorded in the controller, and when the predetermined count or distance is exceeded, a signal is output to an external device. You can use this function to check when the actuator needs re-greasing or periodic inspection.

Maintenance information[Axis No.0]			
Total moving count	123	< < <	Send
Total moving count threshold	0		
Total moving distance[m]	456	< < <	Send
otal moving distance threshold[m]	0		

6 Keeping the alarm generation times with the calendar function

The clock function has been added to facilitate the analysis of the alarms because the time and date of each alarm that has occurred is now shown on the alarm history screen. (The time and date data is retained for 10 days.)

n al a		(COLORADO
Zata tige	K) Code Vesterate	Airstein Trimell/0/2 hours)
detected last	TTT Forestill Bo Exect	***** ***** 11/11/14 11:07:08
Ranspey 1	SCE Control power voltage reduction	11/11/05 06:54:48
Shettery 2	FFF Bowerill Ba Rence	11/11/05 04:54:48
Ristory 3	ODE Distric pover veltage reduction	11/11/08 08101187
Hastery 4	FTT Toward Ba Lizze	13/13/18 031000
Ristory 8	GCE Dintril prver viltage reduction	13/11/12 10:17:10
Stattery 4	ODE Dontool power voltage reduction	11/15/19 10:00(80
Ristery 7	fff Bewallt Ro Error	++++ ++++ 11/11/02 10:00:45
History B		
Ristory B		10 m / / / / / / / / / / / / / / / / / /
History 10		
Hastney 11		
Restory 12		
RANNEY 28		
RLABORY 24		
RAPPORT 18		

<Standard function>

Offboard Tuning Function

Increasing the Actuator's Load Capacity

Offboard tuning is a function to automatically set an optimal gain according to the load, in order to improve the payload and acceleration/deceleration and thereby increase the payload capacity and shorten the takt time.

Offboard tuning provides the following three benefits:

- ① By setting a lower acceleration/deceleration, a load exceeding the rated payload can be transported.
- (2) If the load is smaller than the rated payload, the acceleration/deceleration can be increased.
- ③ The maximum speed can be increased.
- Example) The graph on the right shows the benefits of offboard tuning with an RCS2-SA5C of lead 20.
 - When the acceleration/deceleration is lowered to 0.1 G from the rated acceleration of 0.3 G, the maximum payload increases from 2 kg to 3 kg.
 - $\circledast\,$ If the load is small, the acceleration/deceleration can be increased to a maximum of 1.5 G.
 - ③ The maximum speed can be increased from the standard specification of 1300 mm/s to 1660 mm/s.

Offboard tuning is effective only when a SCON-CA controller is combined with one of the actuators listed below. Also note that the specific benefits vary depending on the actuator model. (See the table below.)

Ver. 8.05.00.00 or later

Models Supporting Offboard Tuning and Benefits

	Horizontal installation								
		beal	Motor	Stan	dard specifica	ation	Afte	er offboard tur	ning
Series	Туре	Leau	MOLOI	Rated	Payload	Maximum	Maximum	Payload	Maximum
		mm	۱۸/	G	ka	speed mm/s	G	ka	speeu mm/s
	SAAC	10	20	G	<u>л</u>	665	15	0.5	665
	<u>SA5C</u>	20	20	-	2	1300	1.5	0.3	1660
	5450	20	20	-	2	1300	1.5	0.2	1660
	5A7C	16	60	-	12	800	1.5	0.25	1060
		10	60	-	12	600	2	2	800
	537C	10	20	-	15	665	0.8	2	665
		10	20	-	4	800	0.8	1	800
RCS2	SAGR	12	30	0.3	6	800	0.8	1	800
		12	50	-	12	800	0.8	3.5	800
	SS7R	10	60	-	12	600	0.8	3.5	600
	55/11	12	20	-	3	600	1	0.25	600
	RA4C	12	20	-	J	600	15	0.25	600
			50		12	800	1.5	0.25	800
	RA5C	16	100	-	12	800	1.5	25	800
			100		1	1800	2	0.25	2000
	SA8C/SS8C	30	150	-	2	1800	2	0.25	2000
RCS3			100	- 1	1	1800	12	0.5	1800
	SA8R/SS8R	30	150	-	2	1800	1.2	1	1800
	SA4C	10	20		4	665		4	665
	SASC	20	20	-	2	1300		2	1330
RCS2CR	SA6C	20	30	0.3	3	1300	0.3	3	1330
	SA7C	16	60		12	800		12	800
	SS7C	12	60		15	600	-	15	600
DCCCCD		20	100	- 1	1	1800	- 1	1	1800
RCSSCR	SA8C/SS8C	30	150		2	1800		2	1800
	SXM/SXL	16	60		3.5	960		1.5	960
ICD		20	100] [3	1800		0.75	1800
ISB	INIXIVI/INIXL	50	200	1.2	9	1800	2	4.5	1800
151 0		40	200		6	2400		2	2400
	EXIVI/EXE	40	400		15	2400		6.5	2400
	S	16	60		4.5	960		1.8	960
	М	30	100		4	1800		1.25	1800
ISPDB		50	200	1	12	1800	1.8	5.5	1800
101 00	1	40	200		7	1800		2.5	1800
	2	10	400		17	1800		7	1800
	SXM	30	200		10	1800		4.5	1800
SSPA	MXM	40	400	1.2	13.5	2400	2	5.5	2400
	LXM	50	750		20	2500		8	2500
	S	16	60	4	4.5	960		4.5	960
	М	30	100	4 _	4	1800		4	1800
ISPDBCR		5	200	1	12	1800	1	12	1800
	L	40	200		7	1800		7	1800
	_		400		17	1800		17	1800
	SXM	30	200	1.2	10	1600	1.2	10	1600
SSPDACR	MXM	40	400	1.2	13.5	1600	1.2	13.5	1600
	LXM	50	750		20	1600		20	1600

Network Function

Supporting Major Field Networks

Most of the major networks are supported, which means the controller can communicate with various equipment through simple, wire-saving connections.

Supported Networks

List of Functions by Operation Mode

Operating Method

To operate the actuator via a network, you can do so by selecting one of the nine operation modes classified under the following two types of movement methods.

- (1) Movement by position number specification Enter the target position, speed, acceleration/deceleration, etc., under a position number in the position data table of the controller and specify the position number via a network to operate the actuator.
 - Operation modes

Remote I/O mode (3 types) Position/simple direct mode (2 types)

(2) Movement by direct numerical specification The target position, speed, acceleration/deceleration, etc., are directly sent as numerical values to operate the actuator.

Operation modes

Half direct mode (3 types) Full direct mode (1 type)

	Mov	ement by	position r	number speci	fication	Movemen	t by direct	numerical s	pecification	
	Rem	Remote I/O mode			e direct mode	Half direct mode			Full direct	
	1	2	3	1	2	1	2	3	mode	
Position data specified operation	_	_	—	0	0	0	0	0	0	
Direct speed/acceleration specification	—		—	—	—	0	0	0	0	
Push-motion operation	0	0	0	0	0	0	0	0	0	
Current position read	—	0	0	0	0	0	0	0	0	
Current speed read	_	0	0	0	0	0	0	0	0	
Position number specified operation	0	0	0	0	0	—	—	—	—	
Completed position number read	0	0	0	0	0	—	—	—	-	
Maximum number of position tables	512	512	512	768	768	Not used	Not used	Not used	Not used	
Force control	\bigtriangleup	\bigtriangleup	0	—	0	—	0	—	0	
Vibration control	0	0	0	0	0	_	—	0	0	

Note The contents of the above table and numbers of occupied bytes (numbers of occupied stations) vary depending on the network type. For details, refer to the operation manual.

Vibration Control

Shortening the Cycle Time

Vibration control is a function to suppress vibration of the work part overhanging from the slider surface of the actuator. Since the time the actuator remains on standby until the work part stops vibrating is shortened and the next operation can be started right away, this function can effectively shorten the cycle time, etc.

The following types of vibration can be suppressed:

- ① Vibration of the load induced by the IAI's actuator, where the load vibrates in the same direction as the moving direction of the actuator
- ⁽²⁾ Vibration at frequencies of 0.5 Hz to 30Hz

Note Take note that the following types of vibration are not covered by vibration control:

- Vibration not caused by an actuator operation (caused by an external force)
 Vibration whose source is located not in the moving direction of the actuator
- Vibration whose source is located not in the moving direction of the actual
 Vibration that has already started before the actuator moves
- Vibration resulting from operation in the pulse-train input mode
- Vibration resulting from home return operation or push-mode operation

Force Control Function

Usable As a Simple Servo Press

Force control is a function that allows for more accurate push control than the traditional push-motion operation, by feeding back the push force via the dedicated load cell (actuator option) fitted on the actuator. When this function is enabled on an actuator of the ultra-high thrust type where the dedicated load cell can be mounted, the actuator can be used as a simple servo press of up to 2 tons (19600 N) in capacity.

Purpose of Use

Press-fitting pins

The push force can be controlled accurately. Also, defects can be recognized by setting an appropriate threshold even when the pins to be press-fitted are thin and loose.

Clinching

A different push force can be set precisely for each product, and whether the clinching completion position has been reached can be checked, as well.

How to Use

An ultra-high thrust actuator with load cell (RCS2-RA13R) is required to implement force control. Push-motion operation is performed in the same manner as before, so all you need is to set a desired push force in the position data table in percent (%).

Ultra-high Thrust Actuator with Load Cell <RCS2-RA13R-LCT/LCN>

External Dimensions

in the load and duty must be smaller than the rated thrust even during normal operation. (2) The value of the payload assumes an acceleration of 0.02 G when the lead is 2.5, or acceleration of 0.01 G when the lead is 1.25. The above value is at the maximum acceleration selectio (3) The value of the horizontal payload assumes that no external force is applied to the rod from any direction other than the moving direction. (4) If the actuator comes with a brake (optional), the brake box (supplied with the brake) is

required in addition to the actuator and controller.

	Actuator Specifications														
I	■ Leads and Payloads ■ Stroke and Maximum Speed									5peed					
	Model number	Motor output (W)	Lead (mm)	Maximum acceleration (G)	Maximum Horizontal (kg)	payload Vertical (kg)	Rated thrust (N)	Continuous push force (N)	Maximum push force (N)	Stroke (mm)	Lead (mm)	troke (mm)	50 1	100	150 200
	RCS2-RA13R-①-750-2.5-②-T2-③-④	750	2.5	0.02	400	200	5106	3567	9800	50~200	2.5	8	35 1	120	125
	RCS2-RA13R-①-750-1.25-②-T2-③-④	/50	1.25	0.01	500	300	10211	7141	19600	50mm)	1.25			62	2
	Carda anglesestian @Encardentaria @C														

Code explanation ① Encoder type ② Stroke ③ Cable length ④ Options

Cable Lengt	h	
Туре	Cable code	
	P (1m)	
Standard type	S (3m)	
	M (5m)	
	X06 (6m) ~X10 (10m)	
Special length	X11 (11m) ~ X15 (15m)	
	X16 (16m) ~X20 (20m)	
	R01 (1m) ~R03 (3m)	
	R04 (4m) ~R05 (5m)	
Robot cable	R06 (6m) ~R10 (10m)	
	R11 (11m) ~R15 (15m)	
	R16 (16m) ~R20 (20m)	

Options

Name	Option code	
Brake (with brake box)	В	
Brake (without brake box)	BN	
Motor side-mounted to the top	MT1/MT2/MT3	
Motor side-mounted to the right	MR1/MR2	
Motor side-mounted to the left	ML1/ML3	
Flange	FL	
Foot bracket	FT	
With load cell (with cable track for the wiring)	LCT	
With load cell (without cable track for the wiring)	LCN	

Actuator Specifications Item Description Ball screw Ø32mm, rolled C10 Drive system Positioning repeatability ±0.01mm 0.2mm or less Backlash Ø50mm (ball spline) Rod diameter Allowable rod load moment 120 N-m Ambient operating temperature, humidity 0 to 40°C, 85% RH or less (Non-condensing) Push-motion operation life of load cell 2 million operations (*1)

(*1) The actuator life is 10 million operations. The load cell can be replaced.

Details of the SCON-CA Controllers

List of Models

Model		SCON-CA									
External view											
I/O type	Standard specification		Ν	etwork conne	ction speci	fication (optiona	al)				
I/O type specification	PIO connection specification (*1)	DeviceNet	CC-Link	PROFIBUS-DP	CompoNet	MECHATROLINK	EtherCAT	EtherNet/IP			
I/O type code	NP/PN	NP/PN DV CC PR CN ML EC									
Applicable encoder type	Incremental Absolute			Incre	emental/Ak	osolute					

(*1) If the controller is operated in the pulse-train mode, only an incremental encoder can be used.

Model

Pulse Converter: AK-04

Open-collector command pulses are converted to differential command pulses. Use this converter if the host controller outputs open-collector pulses.

Specification

ltem	Specification
Input power	24 VDC±10% (Max. 50mA)
Input pulse	Open-collector (Collector current: 12mA max.)
Input frequency	200kHz or less
Output pulse	Differential output (10mA max.) (26C31 or equivalent)
Mass	10g or less (excluding cable connectors)
Accessories	37104-3122-000L (e-CON connector) x 2 Applicable wire: AWG Nos. 24 to 26

Pulse Converter: JM-08

Difference feedback pulses are converted to opencollector feedback pulses. Use this converter if the host controller inputs open-collector pulses.

Specification

ltem	Specification
Input power	24 VDC±10% (Max. 50mA)
Input pulse	Differential input (10 mA max.) (conforming to RS422)
Input frequency	500kHz or less
Output pulse	24-VDC open-collector (Collector current: 25mA max.)
Mass	10g or less (excluding cable connectors)
Accessories	37104-3122-000FL (e-CON connector) x 2 Applicable wire: AWG Nos. 24 to 26

Operation Modes

With this controller, you can select a desired control method from the two modes of positioner mode and pulse-train control mode. In the positioner mode, you can enter position data (target position, speed, acceleration, etc.) in the controller under the desired numbers and then specify each number externally via a I/O (input/output signal) to operate the actuator.

Also, in the positioner mode, you can select the desired operation mode from the eight modes using the parameter.

In the pulse-train control mode, you can control the travel, speed, acceleration, etc., by sending pulses from an external pulse generator.

	Mode	Number of positioning points	Features
	Positioning mode	64 points	Standard factory-set mode. Specify externally a number corresponding to the position you want to move to, to operate the actuator.
	Teaching mode	64 points	In this mode, you can move the slider (rod) via an external signal and register the stopped position in the position data table.
	256-point mode	256 points	In this mode, the number of positioning points available in the positioning mode has been increased to 256 points.
Positioner	512-point mode	512 points	In this mode, the number of positioning points available in the positioning mode has been increased to 512 points.
mode	Solenoid value mode 1 7 points		In this mode, the actuator can be moved only by turning signals ON/OFF, just like you do with an air cylinder of solenoid valve type.
	Solenoid value 3 points		In this mode, the output signal is set to the same as the air cylinder auto switch in the solenoid valve mode.
	Force mode 1	32 points	In this mode, you can move to positions under force control in the positioning mode. (Up to 32 positioning points are available.)
	Force mode 2	5 points	In this mode, you can move to positions under force control in the solenoid valve mode. (Up to five positioning points are available.)
Pulse-train control mode		_	There is no need to enter position data in the controller, and the customer can operate the actuator freely based on custom control.

I/O Signal Table * You can select one of nine types of I/O signal assignments.

						Parameter (PIO p	oattern) selection				Pulse-train mode	
Pin	C .		0	1	2	3	4	5	6	7	0	
No.	Category		Positioning mode	Teaching mode	256-point mode	512-point mode	Solenoid value mode 1	Solenoid value mode 2	Force mode 1	Force mode 2	Standard mode	
		Positioning point	64 points	64 points	256 points	512 points	7 points	3 points	32 points	5 points	_	
1A	24V					P:	P24					
2A	24V					P	24				P24	
3A	_					N	C				NC	
4A	—			NC								
5A		IN0	PC1	PC1	PC1	PC1	ST0	ST0	PC1	ST0	SON	
6A		IN1	PC2	PC2	PC2	PC2	ST1	ST1(JOG+)	PC2	ST1	RES	
7A		IN2	PC4	PC4	PC4	PC4	ST2	ST2(-)	PC4	ST2	HOME	
8A		IN3	PC8	PC8	PC8	PC8	ST3	—	PC8	ST3	TL	
9A		IN4	PC16	PC16	PC16	PC16	ST4	—	PC16	ST4	CSTP	
10A	1	IN5	PC32	PC32	PC32	PC32	ST5	—			DCLR	
11A		IN6	—	MODE	PC64	PC64	ST6	—	—	—	BKRL	
12A	Input	IN7	—	JISL	PC128	PC128	_	—	_	_	RMOD	
13A	mpat	IN8	—	JOG+	—	PC256	—	—	CLBR	CLBR	—	
14A	4	IN9	BKRL	JOG-	BKRL	BKRL	BKRL	BKRL	BKRL	BKRL		
15A		IN10	RMOD	RMOD	RMOD	RMOD	RMOD	RMOD	RMOD	RMOD	_	
16A		IN11	HOME	HOME	HOME	HOME	HOME		HOME	HOME		
17A		IN12	*STP	*STP	*STP	*STP	*STP	—	*STP	*STP	_	
18A		IN13	CSTR	CSTR/PWRT	CSTR	CSTR			CSTR			
19A		IN14	RES	RES	RES	RES	RES	RES	RES	RES	_	
20A		IN15	SON	SON	SON	SON	SON	SON	SON	SON		
1B		OUT0	PM1	PM1	PM1	PM1	PE0	LSO	PM1	PE0	PWR	
2B		OUT1	PM2	PM2	PM2	PM2	PE1	LS1(TRQS)	PM2	PE1	SV	
3B		OUT2	PM4	PM4	PM4	PM4	PE2	LS2(–)	PM4	PE2	INP	
4B		0013	PM8	PM8	PM8	PM8	PE3	_	PM8	PE3	HEND	
5B		0014	PM16	PM16	PM16	PM16	PE4	—	PM16	PE4	ILR	
6B		0015	PM32	PM32	PM32	PM32	PE5	_	TRQS	TRQS	*ALM	
/B		0016	MOVE	MOVE	PM64	PM64	PE6	-	LOAD	LOAD	*EMGS	
8B	Output	0017	ZONE1	MODES	PM128	PM128	ZONE1	ZONE1	CEND	CEND	RMDS	
9B		0018	PZONE/ZONE2	PZONE/ZONET	PZONE/ZONET	PM256	PZONE/ZONE2	PZONE/ZONE2	PZONE/ZONET	PZONE/ZONET	ALM1	
110		0019	RMDS	RMDS	RMDS	RMDS	RMDS	RMDS	RMDS	RMDS	ALM2	
120		00110 0UT11	HEND		HEND	HEND	HEND	HEND	HEND	HEND	ALIVI4	
12B		00111	PEND	PEND/WEND	PEND	PEND	PEND		PEND	PEND		
140		OUT12	SV *EMCS	SV *EMCS	SV *EMCS	SV *EMCS	SV *EMCS	SV *EMCS	SV *EMCS	SV *EMCS	OVLVV/ ALIVIL	
14D		00113	*ALM	*ALM	*ALM	*ALM	*ALM	*ALM	*ALM	*ALM	70NE1	
15D 16P		OUT14	*BALM	*RALM	*RALM	*RALM	*RALM	*RALM	*BALM	*RALM		
178		00115	DALIN	DALIN	DALIN	DALIN	DALIN	DALIN	DALIN	DALIN	ZUNEZ	
1/D												
10D	0					N					N	
20R	01					I	N N				N	
200	01		Ν									

* In the above table, signals in () represent functions available before the home return.
 * In the above table, signals preceded by * are turned OFF while the actuator is operating

Explanation of the I/O Signal Functions

The table below explains the functions assigned to the controller's I/O signals. The available signals vary depending on the controller type and settings, so use the signal table of each controller to check the functions available with that controller.

Category	Signal abbreviation	Signal name Description of function		
	CSTR	PTP strobe (start signal)	The actuator starts moving to the position set by the command position.	
	PC1~PC256	Command position number	The position number of the target position is input (binary input).	
	BKRL	Forced brake release	The brake is forcibly released.	
	RMOD	Operation mode switching	The operation mode can be switched when the MODE switch on the controller is in the AUTO position. (The switch position is AUTO when this signal is OFF, or MANU when the signal is ON.)	
	*STP	Pause	The actuator will decelerate to a stop when this signal turns OFF while the actuator is moving. The remaining movement will be suspended while the actuator is stopped and the movement will resume once the signal turns ON.	
	RES	Reset	The alarm will be reset when the signal turns ON. The remaining travel can be cancelled by turning this signal ON while the actuator is paused (*STP is OFF).	
	SON	Servo ON	The servo is ON while this signal is ON, and remains OFF while this signal is OFF.	
Input	HOME	Home return	When this signal turns ON, the actuator performs home return operation.	
	MODE	Teaching mode	When this signal turns ON, the actuator switches to the teaching mode. (Switching will not occur if CSTR, JOG+ and JOG- are all OFF and the actuator is still moving.)	
	JISL	Jog/inch switching	When this signal turns OFF, the actuator can be jogged with JOG+ and JOG When the signal is ON, the actuator can be inched with JOG+ and JOG	
	JOG+, JOG-	Jog	When the JISL signal is OFF, the actuator starts jogging in + or – direction upon detection of the ON edge of this signal. If the OFF edge of this signal is detected during jogging, the actuator decelerates to a stop.	
	PWRT	Current position write	In the teaching mode, specify a position and then turn this signal ON for at least 20ms, and the current position will be written to the specified position.	
	ST0~ST6	Start signal	In the solenoid valve mode, the actuator moves to the specified position when this signal turns ON. (The start signal is not required.)	
	CLBR	Load cell calibration command	Load cell calibration starts when this signal has remained ON for at least 20ms.	
	PEND/INP	Positioning complete	This signal turns ON when the actuator enters the in-position band after movement. If the actuator exceeds the in-position band, the PEND signal does not turn OFF, but the INP signal turns OFF. PEND and INP can be switched using a parameter.	
	PM1~PM256	Complete position number	The position number of the position reached at the end of positioning is output (binary output).	
	HEND	Home return completion	This signal turns ON upon completion of home return.	
	ZONE1/ZONE2	Zone	This signal turns ON if the current actuator position is within the range set by the parameter.	
	PZONE	Position zone	This signal turns ON when the current actuator position enters the range set in the position data table after position movement. This signal can be used with ZONE1, but PZONE becomes effective only when moving to a specified position.	
	RMDS	Operation mode status output	The operation mode status is output. This signal turns ON when the controller is in the manual mode.	
	*OVLW	Overload warning	This signal is ON in a normal condition, and turns OFF when the overload warning level is exceeded. (Operation will continue.)	
	*ALML	Minor failure alarm	This signal is ON in a normal condition, and turns OFF when a message-level alarm occurs. (Operation will continue.)	
	*ALM	Alarm	This signal is ON when the controller is in a normal condition, and turns OFF when an alarm occurs.	
	MOVE	Moving	This signal is ON while the actuator is moving (also during home return and push-motion operation).	
Output	SV	Servo ON	This signal is ON while the servo is ON.	
Output	*EMGS	Emergency stop output	This signal is ON when no emergency stop is actuated on the controller, and turns OFF when an emergency stop is actuated.	
	*BALM	Absolute battery voltage low warning	If the controller is of the absolute specification, this signal turns OFF when the voltage of the absolute battery drops. (Operation will continue.)	
	MODES	Teaching mode output	This signal turns ON when the actuator enters the teaching mode via MODE signal input. It turns OFF once the actuator returns to the normal mode.	
	WEND	Write complete	This signal is OFF immediately after switching to the teaching mode, and turns ON once writing is completed according to the PWRT signal. When the PWRT signal turns OFF, this signal also turns OFF.	
	PE0~PE6	Current position number	This signal turns ON when the actuator has completed moving to the target position in the solenoid valve mode.	
	CEND	Load cell calibration complete	This signal turns ON upon completion of load cell calibration. When the CLBR signal turns OFF, this signal also turns OFF.	
	LOAD	Load output judgment signal	During push-motion operation, this signal is output when the current value set for the "threshold" is exceeded within the range of "Zone+" and "Zone-" set in the position data table. The signal is used to determine if press-fitting action has been performed correctly.	
	TRQS	Torque level output	This signal is output when the motor current reaches the current value set for the "threshold" in the position data table after the slider (rod) has collided with an obstacle, etc., during movement in push-motion operation.	
	LS0~LS2	Limit switch output	This signal turns ON when the current actuator position enters the in-position band set before and after the target position. If the home return has already completed, this signal is output even before a movement command is issued or while the servo is OFF.	

* In the above table, signals preceded by * are normally ON and turn OFF while the actuator is operating.

I/O Wiring Diagram

Positioning mode/Teaching mode/ Solenoid valve mode

*Connect Pins 1A and 2A to 24 V, and Pins 19B and 20B to 0 V.

• Pulse Train Mode (Differential Output)

Pulse connector

PIO connector (NPN specification)

* Be sure to connect to the shell the shied of the twist track cable connected to the PULSE connector. Also **keep the cable length to 10m or less**. * Connect Pins 1A and 2A to 24 V, and Pins 19B and 20B to 0 V

(*1)-/*ALML/*OVLW/*BALM (switchable with parameters)

I/O Specification

Input Part External Input Specifications

ltem	Specification
Input voltage	24VDC±10%
Input current	4mA/1 circuit
ON/OFF voltage	ON voltage: 18VDC min. OFF voltage: 6VDC max.
Isolation method	Photocoupler

Output Part External Output Specifications

ltem	Specification
Load voltage	24VDC
Maximum load current	100mA/1 point, 400mA/8 points
Leak current	0.1mA max./1 point
Isolation method	Photocoupler

Pulse-Train Type I/O Specification (Differential Line Driver Specification)

Input Part

Maximum number of input pulses : Line driver interface 2.5Mpps Isolation method : Photocoupler isolation

Output Part

Maximum number of output pulses : Line driver interface 2.5Mpps Isolation/non-isolation : Non-isolation

Pulse-Train Type I/O Specification (Open-collector Specification)

The AK-04 (Options) is needed to input pulses. The JM-08 (Options) is needed to output pulses.

Maximum number of input pulses: 200kpps (The AK-04 is needed.) Maximum number of output pulses: 200kpps (The JM-08 is needed.)

* The 24-VDC power supply connected to the AK-4 must be shared with the PIO interface.

* Keep the length of the cable connecting the pulse output unit (PLC) and AK-04/JM-08 as short as possible. Also keep the cable between the AK-04/JM-08

and **PULSE connector to 2m or less**.

Note

Use the same power supply for open collector input/output to/from the host and for the AK-04, JM-08.

Command Pulse Input Patterns

Command pulse train pattern		Input terminal	Forward	Reverse			
	Forward pulse-train	PP·/PP					
	Reverse pulse-train	NP·/NP					
	A forward pulse-train indicates the amo	ount of motor rotation in the f	orward direction, while a reverse pulse-train indicates the	he amount of motor rotation in the reverse direction.			
	Pulse-train	PP./PP					
Negative	Sign	NP·/NP	Low	High			
logic	The command pulse is used	for the amount of mot	the amount of motor rotation, while the sign indicates the rotating direction.				
	Phase A/P pulse train	PP./PP					
	Phase A/b pulse-train	NP·/NP					
	Command phases A and B having a 90° phase difference (multiplier is 4) indicate the amount of rotation and the rotating direction.						
	Forward pulse train	PP·/PP					
Positive logic	Reverse pulse-train	NP·/NP					
	Pulse-train	PP·/PP					
	Sign	NP·/NP	High	Low			
	Dhasa A/D nulsa train	PP·/PP					
	Filase A/b pulse-train	NP·/NP					

SCON Controller

Specification Table Item Specification Applicable motor capacity Less than 400W 400W or more RCS2/RCS3 series actuator/single-axis robot/linear motor Connected actuator Number of controlled axes 1 axis Operation method Positioner type/pulse-train type Number of positioning points 512 points (PIO specification), 768 points (fieldbus specification) Backup memory Nonvolatile memory (FRAM) I/O connector 40-pin connector Number of I/O points 16 input points/16 output points Externally supplied 24VDC±10% I/O power supply RS485 1ch Serial communication CB-PAC-PIO Peripherals communication cable Differential line driver output supported Command pulse-train input method (Note 1) Differential line driver method: 2.5Mpps max./Open-collector method (pulse converter used): 200kpps max. Maximum input pulse frequency Position detection method Incremental encoder/absolute encoder Emergency stop function Available (built-in relay) Forced electromagnetic brake release Brake release switch ON/OFF Motor cable CB-XEU-MA Encoder cable CB-XEU3-PA Single-phase AC90V to AC126.5V Single-phase AC180V to AC253V Single-phase AC180V to AC253V Input power supply 100W (LSA-N10)(*)/331VA 20W/74VA 200W (LSA-S10H, N15S)(*)/534VA 200W (LSA-N15H)(*)/821VA 30W (other than RS)/94VA 30W (RS)/186VA 300W (LSA-N19)(*)/710VA Power-supply capacity (Note 2) 60W/186VA 100W/282VA 400W/968VA 150W/376VA 600W/1212VA 200W/469VA 750W/1569VA XYZ directions - 10 to 57Hz: Single amplitude 0.035mm (continuous), 0.075mm (intermittent) Vibration resistance 58 to 150Hz: 4.9 m/s² (continuous), 9.8 m/s² (intermittent) Ambient operating temperature $0 \sim 40^{\circ}$ 85%RH or less (non-condensing) Ambient operating humidity Operating ambience Not exposed to corrosive gases Protection degree IP20 Mass Approx. 900g (+ 25g for the absolute specification) Approx. 1.2kg (+ 25g for the absolute specification) External dimensions 58mm (W) x 194mm (H) x 121mm (D) 72mm (W) x 194mm (H) x 121mm (D)

(Note 1) For the command pulse input method, use the differential line driver method resistant to noise. If the open-collector method must be used, use the optional pulse converter (AK-04/JM-08) to convert open-collector pulses to differential pulses.
 (Note 2) Controllers operating any of the actuator models denoted by (*) shall conform to the external dimensions of controllers for 400 W or more, even when the output is less than 400W.

External dimensions

400W or more

Options

Teaching Pendant

Features

Model

operation, monitoring and other functions. CON-PTA-C-ENG (Touch panel teaching pendant)

Teaching device offering position input, test

CON-T-ENG (Standard Type teaching pendant)

Configuration

CON-T-ENG options Wall-mounting hook

Model: HK-1

CON-PTA-C-ENG

92. 132 ••• 🔿

CON-T-ENG

Specification

Item	CON-PTA-C-ENG	CON-T-ENG	
Data input	0	0	
Actuator operation	0	0	
Ambient operating temperature/humidity	Temperature 0 to 40°C,	humidity 85%RH or less	
Operating ambience	Free from corrosive gases or significant powder dust.		
Protection degree	IP40	IP54	
Mass	Approx. 570g	Approx. 400g	
Cable length	5	m	
Display	65536 colors White LED backlight	20 characters x 4 lines LCD display	

PC Software (Windows Only)

Features

This startup support software provides functions to input positions, perform test operations and monitor data, among others. Incorporating all functions needed to make adjustments, this software helps shorten the initial startup time.

Model number RCM-101-MW-EU (With external device communication cable + RS232 conversion unit) Configuration Offboard tuning is supported only in Ver. 8.05.00.00 or later.

Model number RCM-101-USB-EU (With external device communication cable + USB adapter + USB cable) Configuration Offboard tuning is supported only in Ver. 8.05.00.00 or later.

USB conversion adapter RCB-CV-USB 3m 5m - External device communication cable CB-RCA-SIO050 USB cable CB-SEL-USB030

Regenerative Resistance Unit

Features

1 unit

This unit converts regenerative current that generates when the motor decelerates, to heat. Check the total wattage of the actuators to be operated and provide a regenerative resistance unit or units if required.

REU-2 (for SCON/SSEL)

Model Specification Unit mass 0.9Kg Built-in regenerative resistor 220Ω 80W Unit-controller connection CB-SC-REU010 (for SSEL) cable (supplied) Guide for Required Quantity Guide for Required Quantity (RCS2-RA13R only) Horizontal Vertical 0 unit ~ 100W

	~ 100W			Lead 2.5	L
	~ 400W		Horizontal	1 unit	
	~ 750W		Vertical	1 unit	
le d	resistance may	-	* The required reg	enerative resi	ist

The required regenerative be more than as specifie depending on the operating conditions.

~ 400W

2 unit ~ 750W

ead 1.25 0 unit 1 unit tance mav depending on the operating conditions.

Absolute Data Backup Battery Features Absolute data backup

battery used when an actuator of absolute specification is operated.

AB-5

Model

number

The information contained in this catalog is subject to change without notice for the purpose of product improvement

IAI Industrieroboter GmbH

Ober der Röth 4 D-65824 Schwalbach / Frankfurt Germany Phone:+49-6196-895-0 Fax:+49-6196-8895-24 E-Mail: info@IAI-GmbH.de Internet: http://www.eu.IAI-GmbH.de

IAI America, Inc.

2690 W. 237th Street Torrance, CA 90505, U.S.A. Phone: +1-310-891-6015 Fax: +1-310-891-0815

IAI (Shanghai) Co., Ltd.

Shanghai Jiahua B. C. A8404.808 Hongqiao Rd., Shanghai 200030, China Phone: +86-21-6448-4753 Fax: +86-21-6448-3992

IAI CORPORATION

645-1 Shimizu Hirose Shizuoka 424-0102, Japan Phone: +81-543-64-5105 Fax: +81-543-64-5182

GB

www.intelligentactuator.de

The small SCON-CAL controller is the newest addition to the SCON series. The compact controller saves you installation space.

The smaller controller reduces the size of your control panel.

WRG

- When the absolute battery voltage or fan speed drops, the "WRG (warning)" LED turns on to alert the situation. With this function, you are informed visually when to replace each maintenance part. (The controller can also be set up to output a warning signal.)
- The total number of actuator movements and the total distance travelled are calculated and recorded in the controller, and when the predetermined count or distance is exceeded, a signal is output to an external device. You can use this function to check when the actuator needs re-greasing or periodic inspection. Past alarms are displayed to facilitate the analysis of the alarms because the time and date of each alarm that has occurred is now shown on the alarm history screen.

3 Supporting Various Field Networks

CC-Link, DeviceNet, PROFIBUS-DP, CompoNet, EtherCAT, EtherNet/IP, PROFINET IO are supported.

Ether**CAT**

CompoNet

All you need is to provide a proper external circuit, and your equipment will meet the requirements for Safety Categories 1 to 4.

Mountable on

The DIN rail mounting specification is available as an option.

Differences among SCON-CA/SCON-CAL/MSCON

		SCON-CA	SCON-CAL	MSCON
Supported encoders		Incremental Absolute	Incremental Absolute	Incremental Absolute
Ρι	Ilse train control	0	_	—
Se	ervo monitor function (*1)	0	—	0
0	ffboard tuning (*2)	0	△ Servo monitor analysis not supported.	0
Vi	bration control function (*3)	0	△ Servo monitor analysis not supported.	0
Axis address setting method		Rotary switch	Parameter	Fixed
Global support		- 0		—
Number of connectable axes		1 axis	1 axis	1 to 6 axes
12W/20W/30W 60W/100W motor 150W/200W motor				
attage	60W/100W motor 150W/200W motor	0	0	0
otor wattage	60W/100W motor 150W/200W motor 400W/600W/750W motor	0	0 	0 _
ported motor wattage	60W/100W motor 150W/200W motor 400W/600W/750W motor LSA-S10H/N15, N19, LSAS-N15 and LSA-N10/LSAS-N10	0	- -	0 - -

[Function Comparison Table]

<<Explanation of Functions>>

(*1) Servo monitor function: You can check the current speed, position, etc.

- (*2) Offboard tuning: An optimal servo gain is calculated according to the load.
- (*3) Vibration control function: When the actuator slider moves, oscillation (vibration) of the work installed on the slider is suppressed.

List of Models

Model		SCON-CAL / CGAL							
External view									
I/O type (*1)	Standard spe	ecification		Net	work connecti	on specificatio	on (optional) (*	2)	
I/O type specification	PIO conne specifica	ection ation	DeviceNet	CC-Link	PROFIBUS-DP	CompoNet	EtherCAT	EtherNet/IP	PROFINET IO
I/O type code	NP/F	PΝ	DV	CC	PR	CN	EC	EP	PRT
Applicable encoder type	Incremental	Absolute			Incr	emental/Absol	lute		

(*1) This product does not support pulse train control. (*2) If a netwok specification is selected, PIOs are not available.

Model

- Linear motors
- Incremental types of the following models:
- + NS-S types + RCS2-SRA7BD, SRGD7BD, SRGS7BD + Mini RoboCylinder RCS2-RN5N, RP5N, GS5N, GD5N,
 - SD5N, TCA5N, TWA5N, TFA5N

Operation Modes

This controller only supports the positioner control mode.

In the positioner mode, you can enter position data (target position, speed, acceleration, etc.) in the controller under the desired numbers and then specify each number externally via a I/O (input/output signal) to operate the actuator. Also, in the positioner mode, you can select the desired operation mode from the six modes using the parameter.

Mode		Number of positioning points	Features
	Positioning mode	64 points	Standard factory-set mode. Specify externally a number corresponding to the position you want to move to, to operate the actuator.
	Teaching mode	64 points	In this mode, you can move the slider (rod) via an external signal and register the stopped position in the position data table.
Positioner mode	256-point mode 256 points		In this mode, the number of positioning points available in the positioning mode has been increased to 256 points.
	512-point mode	512 points	In this mode, the number of positioning points available in the positioning mode has been increased to 512 points.
	Solenoid valve mode 1 7 points		In this mode, the actuator can be moved only by turning signals ON/OFF, just like you do with an air cylinder of solenoid valve type.
	Solenoid valve mode 2	3 points	In this mode, the output signal is set to the same as the air cylinder auto switch in the solenoid valve mode.

I/0	O Signa	I Table * You	can select one of	six types of I/O	signal assignmen	its.		
					Parameter (PIO p	oattern) selection		
			0	1	2	3	4	5
Pin No.	Category		Positioning mode	Teaching mode	256-point mode	512-point mode	Solenoid valve mode 1	Solenoid valve mode 2
		Positioning point	64 points	64 points	256 points	512 points	7 points	3 points
1A	24V				Pa	24		
2A	24V				P2	24		
ЗA					N	С		
4A					N	С		
5A		INO	PC1	PC1	PC1	PC1	STO	STO
6A		IN1	PC2	PC2	PC2	PC2	ST1	ST1(JOG+)
7A		IN2	PC4	PC4	PC4	PC4	ST2	ST2(-)
8A		IN3	PC8	PC8	PC8	PC8	ST3	—
9A		IN4	PC16	PC16	PC16	PC16	ST4	—
10A		IN5	PC32	PC32	PC32	PC32	ST5	—
11A		IN6	—	MODE	PC64	PC64	ST6	—
12A	Input	IN7		JISL	PC128	PC128		
13A	mpat	IN8	—	JOG+	—	PC256		—
14A		IN9	BKRL	JOG-	BKRL	BKRL	BKRL	BKRL
15A		IN10	RMOD	RMOD	RMOD	RMOD	RMOD	RMOD
16A		IN11	HOME	HOME	HOME	HOME	HOME	_
17A		N12	*STP	*STP	*STP	*STP	*STP	—
18A		IN13	CSTR	CSTR/PWRT	CSTR	CSTR	—	
19A		IN14	RES	RES	RES	RES	RES	RES
20A		IN15	SON	SON	SON	SON	SON	SON
1B		OUTO	PM1	PM1	PM1	PM1	PEO	LSO
2B		OUTI	PM2	PM2	PM2	PM2	PE1	LS1(TRQS)
ЗB		OUT2	PM4	PM4	PM4	PM4	PE2	LS2(-)
_4B		OUT3	PM8	PM8	PM8	PM8	PE3	
5B		OUT4	PM16	PM16	PM16	PM16	PE4	—
6B		OUT5	PM32	PM32	PM32	PM32	PE5	
7B		OUT6	MOVE	MOVE	PM64	PM64	PE6	—
8B	Output	OUT7	ZONE1	MODES	PM128	PM128	ZONE1	ZONE1
9B	Output	OUT8	PZONE/ZONE2	PZONE/ZONE1	PZONE/ZONE1	PM256	PZONE/ZONE2	PZONE/ZONE2
10B		OUT9	RMDS	RMDS	RMDS	RMDS	RMDS	RMDS
11B		OUT10	HEND	HEND	HEND	HEND	HEND	HEND
12B		OUT11	PEND	PEND/WEND	PEND	PEND	PEND	
13B		OUT12	SV	SV	SV	SV	SV	SV
14B		OUT13	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS
15B		OUT14	*ALM	*ALM	*ALM	*ALM	*ALM	*ALM
16B		OUT15	*BALM	*BALM	*BALM	*BALM	*BALM	*BALM
17B					N	С		
18B					N	С		
19B	OV				Ν	J		
20B	OV				Ν	J		

* In the above table, signals in () represent functions available before the home return.

* In the above table, signals preceded by * are negative logic signals. Negative logic input signals are processed when turned OFF. Negative logic output signals normally remain ON while the power is supplied, and turn OFF when the signal is output.

Explanation of the I/O Signal Functions

The table below explains the functions assigned to the controller's I/O signals. The available signals vary depending on the settings. Check the available functions.

Category	Signal abbreviation	Signal name	Description of function				
	CSTR	PTP strobe (start signal)	The actuator starts moving to the position set by the command position.				
	PC1~PC256	Command position number	The position number of the target position is input (binary input).				
Input	BKRL	Forced brake release	The brake is forcibly released.				
	RMOD	Operation mode switching	The operation mode can be switched when the MODE switch on the controller is in the AUTO position. (The switch position is AUTO when this signal is OFF, or MANU when the signal is ON.)				
	*STP	Pause	The actuator will decelerate to a stop when this signal turns OFF while the actuator is moving. The remaining movement will be suspended while the actuator is stopped and the movement will resume once the signal turns ON.				
	RES	Reset	The alarm will be reset when the signal turns ON. The remaining travel can be cancelled by turning this signal ON while the actuator is paused (*STP is OFF).				
	SON	Servo ON	The servo is ON while this signal is ON, and remains OFF while this signal is OFF.				
Input	HOME	Home return	When this signal turns ON, the actuator performs home return operation.				
	MODE	Teaching mode	When this signal turns ON, the actuator switches to the teaching mode. (Switching will not occur if CSTR, JOG+ and JOG- are all ON and the actuator is still moving.)				
	JISL	Jog/inch switching	When this signal turns OFF, the actuator can be jogged with JOG+ and JOG When the signal is ON, the actuator can be inched with JOG+ and JOG				
	JOG+, JOG-	Jog	When the JISL signal turns OFF, the actuator can be jogged in the positive direction when the ON edge of the JOG+ signal is detected, or in the negative direction when the ON edge of the JOG- signal is detected. If the OFF edge is detected while the actuator is jogging with each signal, the actuator will decelerate to a stop. When the JISL signal turns ON, the actuator can be inched.				
	PWRT	Current position write	In the teaching mode, specify a position and then turn this signal ON for at least 20ms, and the current position will be written to the specified position.				
	ST0~ST6	Start signal	In the solenoid valve mode, the actuator moves to the specified position when this signal turns ON. (The start signal is not required.)				
	PEND	Positioning complete	This signal turns ON when the actuator enters the in-position band after movement. Even if the actuator exceeds the in-position band, the PEND signal does not turn OFF, but the INP signal turns OFF. PEND and INP can be switched using a parameter.				
	PM1~PM256	Complete position number	The position number of the position reached at the end of positioning is output (binary output).				
	HEND	Home return completion	This signal turns ON upon completion of home return.				
	ZONE1, ZONE2	Zone	This signal turns ON if the current actuator position is within the range set by the parameter.				
	PZONE	Position zone	This signal turns ON when the current actuator position enters the range set in the position data table after position movement. This signal can be used with ZONE1/ ZONE2, but PZONE becomes effective only when moving to a specified position.				
	RMDS	Operation mode status output	The operation mode status is output. This signal turns ON when the controller is in the manual mode.				
	*ALM	Alarm	This signal is ON when the controller is in a normal condition, and turns OFF when an alarm occurs.				
	ALM1~ALM8	Alarm code output signal	When an alarm occurs, a detail of the alarm is output as a binary code.				
	MOVE	Moving	This signal is ON while the actuator is moving (also during home return and push-motion operation).				
Output	SV	Servo ON	This signal is ON while the servo is ON.				
	*EMGS	Emergency stop output	This signal is ON when no emergency stop is actuated on the controller, and turns OFF when an emergency stop is actuated.				
	*BALM	Absolute battery voltage low warning	This signal turns OFF to provide a warning when the absolute battery voltage drops, fan speed drops or overloading occurs. (The actuator continues to operate.)				
	MODES	Teaching mode output	This signal turns ON when the actuator enters the teaching mode via MODE signal input. It turns OFF once the actuator returns to the normal mode.				
	WEND	Write complete	This signal is OFF immediately after switching to the teaching mode, and turns ON once writing is completed according to the PWRT signal. When the PWRT signal turns OFF, this signal also turns OFF.				
	PE0~PE6	Current position number	This signal turns ON when the actuator has completed moving to the target position in the solenoid valve mode.				
	LS0~LS2	Limit switch output	This signal turns ON when the current actuator position enters the in-position band set before and after the target position. If the home return has already completed, this signal is output even before a movement command is issued or while the servo is OFF.				

* In the above table, signals preceded by * are negative logic signals, which are normally ON while the power is supplied, and turn OFF when the signal is output.

I/O Wiring Diagram

Positioning mode/Teaching mode/Solenoid valve mode

*Connect Pins 1A and 2A to 24 V, and Pins 19B and 20B to 0 V.

I/O Specification

Input Part External Input Specifications

ltem	Specification
Input voltage	DC24V ±10%
Input current	4mA/1 circuit
ON/OFF voltage	ON voltage: DC18V min. OFF voltage: DC6V max.
Isolation method	Photocoupler

5.6kΩ

N

Output Part External Output Specifications

ltem	Specification	
Load voltage	DC24V	
Maximum load current	50mA/1 point, 400mA/8 points	
Leak current	0.1mA max./1 point	
Isolation method	Photocoupler	

NPN specification Controller

PNP specification Controller

Specification Table Specification Item Applicable motor capacity 200W or less Connected actuator RCS2/RCS3 series actuator/single-axis robot Number of controlled axes 1 axis Positioner Operation method Direct value ○ (Available only for the Fieldbus specification) Pulse train 512 points (PIO specification), 768 points (Fieldbus specification) Number of positioning points Nonvolatile memory (FRAM) Backup memory 40-pin connector I/O connector 16 input points/16 output points (Not available for the Fieldbus specification) Number of I/O points I/O power supply Externally supplied 24VDC±10% Serial communication RS485 1ch Peripherals communication cable CB-PAC-PIO Position detection method Incremental encoder/absolute encoder Standard type (CAL): Available (Built-in cutoff relay) **Emergency stop function** Global type (CGAL): Not available (External cutoff relay) Brake release switch ON/OFF Forced electromagnetic brake release Single-phase AC100V to AC115V ±10% Input power supply Single-phase AC200V to AC230V $\pm 10\%$ 12W/89VA 20W/74VA 30W (other than RS)/94VA Power-supply capacity 30W (RS)/186VA 60W/186VA 100W/282VA 150W/376VA 200W/469VA XYZ directions - 10 to 57Hz: Single amplitude 0.035mm (continuous), 0.075mm (intermittent) Vibration resistance 58 to 150Hz: 4.9 m/s² (continuous), 9.8 m/s² (intermittent) Approx. 10 days **Retention time** Calendar/ Clock function Charge time Approx. 100 hours **Protective functions** Overcurrent, abnormal temperature, low fan speed monitor, encoder disconnection, etc. Operating temperature range 0~40°C Operating humidity range 85%RH or less (non-condensing) **Operating ambience** Not exposed to corrosive gases Vertical installation (Exhaust side on top) Installation direction Installation Installation method Screw mounting or DIN rail mounting Forced air cooling Air cooling method Protection degree IP20 or equivalent Mass Approx. 560g (+ 25g for the absolute specification) External dimensions 49 mm (W) x 158 mm (H) x 116 mm (D)

External Dimensions

DIN Rail Mounting Specification

Name of Each Part

Regenerative resistance unit connector

Connector for the resistance unit that absorbs regeneration current produced when the actuator decelerates to stop.

2 System I/O connector

Connector for the emergency stop switch, etc.

3 Motor connector

Connector for the motor cable of the actuator

4 Power supply connector

AC power connector. Divided into the control power input and motor power input.

5 Grounding screw

Protective grounding screw. Always ground this screw.

6 LED display

These LED colors indicate the condition of the controller.

Name	Color	Explanation
PWR	Green	Lits when the system is ready (after power is ON, CPU normal function)
SV	Green	Lits when servo is ON
ALM	Orange	Lits during an alarm
EMG	Red	Lits during an emergency stop
WRG	Orange	Flashes when ABS battery voltage is low or a rotational speed of the fan decreases, etc.

7 PIO connector

Connector for the cable connecting input/output signals to the peripheral equipments of PLC, etc.

8 Operating mode switch

Name	Explanation	
MANU	Does not receive PIO commands	
AUTO	Can receive PIO commands	

*For a standard specification, the emergency stop switch on the teaching pendant becomes effective when the line is connected, regardless of whether this switch is set to AUTO or MANU.

SIO connector

Connector for the teaching pendant or PC communications cable.

Brake release switch

This is the electromagnetic brake forced release switch, integrated with the actuator.

*It is necessary to connect the DC24V power for the brake drive.

Brake power connector

Brake power DC 24V supply connector (only required when the brake equipped actuator is connected)

Encoder connector

Connector for the encoder

Absolute battery connector

Connector for the absolute data backup battery. (Required only for absolute encoder specifications)

14 Absolute battery holder

Battery holder for installing the absolute data backup battery

Model TB-01-C-ENG (*)

Options

Teaching Pendant

Features Teaching device offering position input, test operation, monitoring and other functions.

Dummy Plug

This plug is needed when the actuator is Features operated with a safety category compliant controller (SCON-CGÁL).

Model DP-5

(*) CE certification

coming soon.

PC Compatible Software (Windows Only)

This startup support software provides functions to input positions, perform test operations and Features monitor data, among others.

Incorporating all functions needed to make adjustments, this software helps shorten the initial startup time.

Absolute Data Backup Battery

Features Absolute data backup battery used when an actuator of absolute specification is operated.

Model AB-5 (Battery only) AB-5-CS3 (With case)

Regenerative Resistance Unit

Features This unit converts regenerative current that generates when the motor decelerates, to heat. Check the total wattage of the actuators to be operated and provide a regenerative resistance unit or units if required.

Model RESU-2 (Standard specification) RESUD-2 (DIN rail mounting specification)

Specification

Model	RESU-2	RESUD-2	
Unit mass	Approx. 0.4 kg		
Built-in regenerative resistor	235Ω 80W		
Actuator mounting method	Screw mounting	DIN rail mounting	
Supplied cable	CB-SC-REU010		

(RESUD-2)

Æ

₫ſ∂

154

Guide for Required Quantity

	Horizontal	Vertical		
0 unit	~100W			
1 unit	~200W			

* The required regenerative resistance may be more than as specified above depending on the operating conditions.

Replacement Fan Unit

Model SCON-FU

[Maintenance Cables]

Connected actuator		Motor cable		Encoder cable	
		Standard cable	Robot cable	Standard cable	Robot cable
RCS3 RCS2 RCS3CR RCS2CR RCS2W	RTC□L RT6	- CB-RCC-MA	CB-RCC-MA - RB CB-XEU-MA - CB-XEU-MA - CB-XEU-MA	CB-RCS2-PLA	CB-X2-PLA
	Other models			CB-RCS2-PA	CB-X3-PA
Other models	NS w/o LS	CB-X-MA CB-XEU-MA		СВ-ХЗ-РА	B-XEU3-PA
	NS w/ LS			CB-X2-PLA	CB-XEU2-PLA
	Model other than NS w/o LS			СВ-Х1-РА	CB-XEU1-PA
	Model other than NS w/ LS			CB-X1-PLA	CB-XEU1-PLA
	ISWA			CB-X1-PA	See Back Page

* All actuators other than the RCS3/RCS2 series come standard with a robot cable.

Maintenance Parts

Please refer to the models listed below if a cable needs to be exchanged, etc., after your purchase.

BK

Ground wire and braided shield

red part

The shield is clamped to the hood

IAI America Inc.

USA Headquarters 2690 W. 237th Street, Torrance, CA 90505, USA Phone: +1-310-891-6015 Fax: +1-310-891-0815

IAI Industrieroboter GmbH

Europe Headquarters Ober der Röth 4, D-65824 Schwalbach, Germany Phone: +49-6196-8895-0 Fax: +49-6196-8895-24

www.intelligentactuator.de

IAI CORPORATION

Japan Headquarters 577-1 Obane, Shimizu-Ku, Shizuoka 424-0103, Japan Phone: +81-543-64-5105 Fax: +81-543-64-5192

