RoboCylinder with Standard Battery-less Absolute Encoder

RCP5 Series

Rod-Type

ABSOLUTE

Electric Actuator with Built-in Battery-less Absolute Encoder

Single-axis Controller PCON-CA

Supporting the battery-less absolute encoder

6-axis controller with PLC function MSEP-LC (*)
Supporting the battery-less absolute encoder PLC function 6-axis position control Supporting the PowerCon (3 axes) Supporting field networks
(*) MSEP-LC coming soon with CE conformity.

114

8-axis controller MSEP-C
Supporting the battery-less absolute encoder
8-axis position control
Supporting the PowerCon (4 axes)
Supporting field networks

The RoboCylinder is Easy to Use!!!

No More
 Problems

Shop-Floor Problems and Solutions

$\|c\|$
$\begin{array}{l}\text { Air cylinder } \\ \text { problems }\end{array}$

rate due to choco-tei

caused by the auto

switch failure or air

pressure fluctuations\end{array}\right\}\)| Difficult to shorten |
| :--- |
| cycle-time due to the |
| speed limit from the |
| shock caused by a |
| stoppage |

Electric actuator problem (Absolute type)

Higher cost

Battery replacement time management is required

Battery replacement labor and cost

	Electric actuator problem (Absolute type)
1 Higher cost	
2Battery replacement time management is required	
3	Battery replacement labor and cost

Solved with an electric actuator (CT Effects)*

Choco-tei significantly reduced
Speed increase nowpossible with no shock caused by a stoppage

Solved with the absolute type

Home return not required

Solved with the battery-less absolute type

Battery is not required
Slider type offered at the same price as the incremental type

Problems solved with the RCP5 Series!

[^0]
What is an absolute encoder?

The home reference is lost when the power is shut down. This type of encoder will return to home before making a commanded move after a power cycle.

Absolute type

With this type, position data is retained even if the power is shut down and it can be started from the current position where the power is turned on.

Advantages of an absolute encoder

Advantage 1:

Advantage 2:

Home return is not required, which means reduced amount of labor and time required for adjustment when starting up the device. The amount of time required is reduced for adjustment to restart the device after an emergency stop.

What is a battery-less absolute encoder?

A battery-less absolute encoder is an absolute encoder that verifies the current position based on the interlocked gear position. On conventional absolute encoders, the current position was stored in the battery. battery-less type is now available and a battery to store data is no longer required.

Advantages of a battery-less absolute encoder

Advantage 1 :	More economical with no cost associated with battery replacement.
Advantage 2:	Battery replacement management is no longer required. Labor for replacement work is also no longer required.
Advantage 3	Battery installation space is not required.
Advantage 4:	Operation can resume with no adjustment required even when the cable between the controller and the actuator is replaced because the positional information is read each time
Advantage 5:	No external sensor, such as a sensor to check the origin, is required since home return is not necessary.
Advantage 6:	IAI's slider type, even with the battery-less absolute encoder, is offered for the same price as the conventional incremental type.

Service life of a battery-less absolute encoder

The mechanical configuration of the battery-less absolute encoder offers a service life that is approximately four times the actuator guide's standard rating. Furthermore, it can be used with a sense of security because it will output an error when a certain amount of wear in the gear section is detected.

Feature 1.5 times higher maximum speed and double the payload when combined with a PowerCon

Shorter Takt Time Significantly Boosts the Productivity of Your System

When the new controller <PowerCon> is equipped with our newly developed high-output driver (patent pending) is used, the maximum speed increases significantly by up to 1.5 times the levels achievable with IAl's conventional models, while the payload is greater by up to twice (*). In addition to these amazing improvements in specifications, the maximum speed does not drop as much even when the payload increases due to increased torque with the high speed motor, meaning that the dynamic performance equivalent to that of a higher-class model can be achieved at lower cost.

Multi-axis type is now available with a PowerCon

The MSEP controller, now with a PowerCon, is capable of operating the RCP5 in up to four-axis applications at high speeds 1.5 times the level achievable with the conventional models, and at a least double the dynamic payload performance. Additionally, the standard type not combined with a PowerCon can operate the RCP5 in up to eight-axis applications. Furthermore, it can move to a specified value via a field network.

The rod type <Radial Cylinder> with a built-in guide mechanism can carry radial loads over a long stroke of up to 800mm.

The rod type <Radial Cylinder> has a built-in ball circulating type linear guide mechanism in the actuator to carry radial loads applied to the rod over a long stroke of up to 800 mm . The actuator can also support a radial load applied at a position offset from the center of the rod.

Usage example 1 When a guide mechanism is required in a tight space

Usage example 2 When the rod needs to be straight

Feature
Easier to Maintain
Greasing has become easier, as the ball screw and guide can be lubricated at the same time from the two grease nipples on the left and right, accessible when the frame cover is removed.

This feature is not available for RCP5-RA8/RA10

Variation＿RCP5 ${ }_{\text {series }}$

The RoboCylinder is Easy to Use！！！

Type	External view	Actuator width	Stroke （mm）	Ball screw lead（mm）	Maximum speed （ mm / s ）	Maximum payload（kg）		Page
						Horizontal	Vertical	
RA4C			60～410	16	1120 ＜840＞	6	1.5	
				10	700	15	2.5	
				5	350	28	5	
				2.5	175	40	10	
RA6C			65～415	20	800	6	1.5	
				12	700	25	4	
				6	450	40	10	
				3	225	60	20	
RA7C	d		70～520	24	800 〈600〉	20	3	
				16	700 〈560〉	50	8	
				8	420	60	18	
				4	210	80	28	

Rod type

$\rightarrow \mathrm{P} .23$

Model	Type	External view	Actuator width	Stroke （mm）	Ball screw lead（ mm ）	Maximum speed （ mm / s ）	Maximum payload（kg）		Page
							Horizontal	Vertical	
Straight motor specification	RA8C			50～700	20	600 〈450〉	30	5	
					10	300 〈250〉	60	40	$\rightarrow \mathrm{P} .23$
					5	150	100	70	
	RA10C			50～800	10	250 〈167〉	80	80	
					5	125	150	100	$\rightarrow \mathrm{P} .25$
					2.5	63	300	150	
Side－mounted motor specification	RA8R	$4 \gg$	－0	50～700	20	400	30	5	
					10	200	60	40	$\rightarrow \mathrm{P} .27$
					5	100	100	70	
	RA10R		๑๐	50～800	10	200 ＜140〉	80	80	$\rightarrow \mathrm{P} .29$
			0		5	100	150	100	
					2.5	50	300	150	

Controller \rightarrow P． 39

Maximum number of connected axes	Type	External view	I／O control function	Applicable encoder	Power－supply voltage	Features	Page
1 axis	PCON－CA／CFA		－	Incremental		Single－axis positioner is designed for easy control using PIOs．Common boards are used to let you operate the range of actuators from RCP2 through RCP5 with the same controller by simply changing the parameters．	$\rightarrow \text { P. } 39$
8 axes	MSEP－C		－	Simple absolute Battery－less absolute	DC24V	8－axis positioner is designed for easy control using PIOs．A combination of pulse motor， AC servo motor and $D C$ servo motor actuators can be operated with one controller．	
6 axes	MSEP－LC（＊）		\bigcirc			The I／O control function supports standalone operation and control of peripheral equipment．	

（＊）MSEP－LC coming soon with CE conformity．

Models/Options_RCP5 ${ }_{\text {series }}$

The RoboCylinder is Easy to Use!!!

Model

Specification

Items

Model Specification Items

Option

Actuator Options

Brake	$\begin{array}{cl}\text { Applicable models } & \text { All models } \\ \text { Descripition } & \begin{array}{l}\text { A mechanism that is used to hold the slider or rod in place when the actuator is used vertically, } \\ \text { so that it will not drop and damage the work part, etc., when the power or servo is turned off. }\end{array}\end{array}$		
Option code: B			
Optional cable exit direction Option code: CJT CJR CJL CJB CJO			A10R direction of the motor/encoder cables to the top, bottom, left or right. Side-mounted motor type * View from the front of the actuator
\square Side-mounted motor direction Option code: ML/MR * Be sure to specify either "ML" or "MR" for the side-mounted motor type.	Apopicable models Description The motor is side-mounted to the left (standard) Option code: ML	RCP5-RA8R/RA10R The side-mounted motor dire respectively, as viewed from	be specified. ML and MR represent the left and right, side of the actuator. The motor is side-mounted to the right Option code: MR
$\begin{aligned} & \text { Non-motor end } \\ & \text { specification } \\ & \text { Option code: NM } \end{aligned}$	Applicable models Description	All models Select this option if you want from the normal position (the	e the home position of the actuator's slider or rod d) to the front end.

Flange Option code: FL

Applicable models
 Description

RCP5-RA4C/RA6C/RA7C/RA8C/RA8R/RA10C/RA10R

A bracket that is used to secure a rod actuator from the actuator side. The flange can be purchased separately later. * For dimensions on each model, check on P. 59.

```
Tip Adapter
    (Flange)
    Option code: FFA
```

```
Tip Adapter
    (Internal thread)
    Option code: NFA
```

Tip Adapter
(Keyway)
Option code: KFA

Applicable models

Description

Applicable models

Description

Applicable models

Description

RCP5-RA4C/RA6C/RA7C

An adapter that is used to install jigs, etc. on the rod tip using four bolts.

* For dimensions on each model, check on P. 59.

RCP5-RA4C/RA6C/RA7C

An adapter that is used to install jigs, etc. on the rod tip using a bolt.

* For dimensions on each model, check on P. 60.

RCP 5-RA4C

Built-in guide mechanism

RoHS

(1) The payload in "Actuator Specifications" represents the maximum values, but the payload of a specific model varies depending on the acceleration. For details, refer to "Selection Guideline" (Table of RCP5 Payload by Speed/Acceleration) on pp. 33 to 34.
(2) Refer to P. 31 for the push-motion operation.

Code explanation (1) Stroke (2) Cable length (3) Options

Cable Length	
Type	Cable symbol
Standard type	$\mathrm{P}(1 \mathrm{~m})$
	$\mathrm{S}(3 \mathrm{~m})$
	M (5m)
Special length	X06(6m) ~ X10(10m)
	X11(11m) ~ X15(15m)
	X16(16m) ~ X20(20m)
Robot cable	R01(1m) ~ R03(3m)
	R04(4m) ~ R 05 (5m)
	R 06(6m) ~ R 10(10m)
	R 11(11m) ~ R 15(15m)
	R16(16m) ~ R 20(20m)

Option

Name	Option code	See page	
Brake	B	$\rightarrow P .10$	
Flange	FL	$\rightarrow P$	
Tip adapter (flange)	FFA	$\rightarrow P .59$	
Tip adapter (internal thread)	NFA	$\rightarrow P .60$	
Tip adapter (keyway)	KFA		
Non-motor end specification	NM	$\rightarrow P .10$	

Actuator Specifications

Item	Description
Drive system	Ball screw $\varnothing 8 \mathrm{~mm}$, rolled C10
Positioning repeatability	$\pm 0.02 \mathrm{~mm}$
Lost motion	0.1 mm or less
Rod	$\varnothing 20 \mathrm{~mm}$ Aluminum
Rod non-rotation precision (*1)	± 0 deg
Allowable rod load mass	Refer to P. 18 and P. 35
Rod tip overhang distance	100 mm or less
Ambient operating temperature, humidity	0 to $40^{\circ} \mathrm{C}, 85 \%$ RH or less (Non-condensing)

| Ambient operating temperature, humidity | 0 to $40^{\circ} \mathrm{C}, 85 \%$ RH or less (Non-condensing) |
| :--- | :--- | :--- |

(*1) Accuracy of rod displacement in rotating direction when no load is received.
Offset distance at end of rod (100 mm or less)

downloaded from the website．
www．robocylinder．de
＊1 During home return，be careful to avoid interference from peripheral objects because the slider travels until the mechanical end．
＊2 The orientation of the width across flats varies depending on the product
＊3 If the actuator is installed using the front housing and flange，make sure the actuator will not receive any external force
（For details，refer to＂Notes on Installing Rod Actuators＂on P．31．）
ME：Mechanical end
SE：Stroke end

－Dimensions and Mass by Stroke
＊The dimensions in（）apply when brake is equipped．

Stroke		60	110	160	210	260	310	360	410
L	Without brake	303	353	403	453	503	553	603	653
	With brake	334	384	434	484	534	584	634	684
A		50	100	100	200	200	300	300	400
B		35	85	85	185	185	285	285	385
C		25	50	50	50	50	50	50	50
D		0	0	1	1	2	2	3	3
E		50	100	50	100	50	100	50	100
F		8	8	10	10	12	12	14	14
G		－	1	1	2	2	3	3	4
H		50	50	100	50	100	50	100	50
J		134	184	234	284	334	384	434	484
K		179	229	279	329	379	429	479	529
M		6	6	6	8	8	10	10	12
Allowable static load at end of rod（N）		55.8	44.6	37.1	31.7	27.6	24.3	21.7	19.5
Allowable dynamic load at end of rod（N）	Load offset Omm	25.4	19.5	15.5	12.8	10.8	9.2	7.9	6.9
	Load offset 100mm	16.5	14.5	12.4	10.7	9.2	8.0	7.0	6.2
Allowable static torque at end of rod（Nm）		5.6	4.5	3.8	3.2	2.8	2.5	2.3	2.1
Allowable dynamic torque at end of rod（Nm）		1.7	1.5	1.2	1.1	0.9	0.8	0.7	0.6
Mass（kg）	Without brake	1.1	1.2	1.3	1.4	1.6	1.7	1.8	1.9
	With brake	1.3	1.4	1.5	1.6	1.8	1.9	2.0	2.1

Applicable Controller
RCP5 series actuators can be operated with the controller indicated below．Select the type according to your intended application．

Name	External view	Model number	Features	Maximum number of positioning points	Input power	Power supply capacity	Reference page
Positioner type		PCON－CA－35PWAI－NP－■－0－■ PCON－CA－35PWAI－PN－ㅁ－0－\square	Equipped with a high－output driver Positioner type based on PIO control	512 points	DC24V	Refer to P． 46	Refer to P． 39
Pulse－train type		PCON－CA－35PWAI－PLN－$\square-0-\square$ PCON－CA－35PWAI－PLP－ㅁ－0－■	Equipped with a high－output driver Pulse－train input type	－			
Field network type		PCON－CA－35PWAI－（1）－0－0－\square	Equipped with a high－output driver Supporting major field networks	768 points			
Position controller， 8－axis type	117\％	MSEP－C－\square－35PWAI～$\square-\square-0$	Positioner type that accepts connection of up to eight axes．	3 points／256 points		Refer to P． 55	Refer to P． 47
6 －axis type with I／O control function	IIII	MSEP－LC－■－35PWAI～ロ－ロ－0－ロ（＊） ${ }^{*}$ ）MSEP－LC coming soon with CE conformity．	Axes can be moved and I／O signal turned ON／OFF using a ladder logic program．	256 points			

＊In the model numbers shown above，（1）indicates the field network specification（DV，CC，PR，CN，PRT，EC or EP）

RCP 5-RA6C

Built-in guide mechanism

RoHS

(1)The payload in "Actuator Specifications" represents the maximum values, but the payload of a specific model varies depending on the acceleration. For details, refer to "Selection Guideline" (Table of RCP5 Payload by Speed/Acceleration) on pp. 33 to 34.
(2) Refer to P. 31 for the push-motion operation.

■ Correlation Diagrams of Speed and Payload
(1) High output enabled (PowerCon) - PCON-CA, MSEP-C/LC connected

 Speed (mm / s)
(2) High output disabled (standard) - PCON-CA, MSEP-C/LC connected

Actuator Specifications

Model number	$\begin{aligned} & \hline \text { Lead } \\ & (\mathrm{mm}) \\ & \hline \end{aligned}$	High outputsetting	Max. payload		$\begin{aligned} & \hline \text { Max. push } \\ & \text { force (N) } \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline \begin{array}{l} \text { Stroke } \\ (\mathrm{mm}) \end{array} \\ \hline \end{array}$
			Horizonal (kg)	Vericiad (kg)		
RCP5-RA6C-WA-42P-20-(1)-P3-22-3	20	Enabled	6	1.5	56	$\begin{gathered} 65 \sim 415 \\ \text { (every } 50 \mathrm{~mm} \text {) } \end{gathered}$
		Disabled				
RCP5-RA6C-WA-42P-12- (1)-P3- (2)-3	12	Enabled	25	4	93	
		Disabled				
RCP5-RA6C-WA-42P-6- 1 - P3- (2)-3	6	Enabled	40	10	185	
		Disabled				
RCP5-RA6C-WA-42P-3- (1)-P3- (2)-3	3	Enabled	60	20	370	
		Disabled	40			

Stroke and Maximum Speed			(unit.mms)
$\begin{aligned} & \hline \text { Lead } \\ & (\mathrm{mm}) \end{aligned}$	High output setting	$\begin{gathered} 65 \sim 365 \\ \text { (every 50mm) } \end{gathered}$	$\begin{aligned} & \hline 415 \\ & (\mathrm{~mm}) \end{aligned}$
20	Enabled	800	
	Disabled	640	
12	Enabled	700	
	Disabled	500	
6	Enabled	450	
	Disabled	250	
3	Enabled	225	220
	Disabled	125	

Code explanation (1) Stroke (2) Cable length (3) Options

Cable Length	
Type	Cable symbol
Standard type	P (1m)
	$\mathrm{S}(3 \mathrm{~m})$
	M (5m)
Special length	X06(6m) ~ X10(10m)
	X11(11m) ~ X15(15m)
	X16(16m) ~ X20(20m)
Robot cable	R01(1m) ~ R03(3m)
	R04(4m) ~ R05(5m)
	R06(6m) ~ R 10(10m)
	R11(11m) ~R15(15m)

Option

Name	Option code	See page	
Brake	B	$\rightarrow P .10$	
Flange	FL	$\rightarrow P$	
Tip adapter (flange)	FFA	$\rightarrow P .59$	
Tip adapter (internal thread)	NFA	$\rightarrow P$	
Tip adapter (keyway)	KFA		
Non-motor end specification	NM	$\rightarrow P .10$	

Actuator Specifications

Item	Description
Drive system	Ball screwø10mm, rolled C10
Positioning repeatability (*1)	$\pm 0.02 \mathrm{~mm}[\pm 0.03 \mathrm{~mm}]$
Lost motion	0.1 mm or less
Rod	$\varnothing 25 \mathrm{~mm}$ Aluminum
Rod non-rotation precision (*2)	± 0 deg
Allowable rod load mass	Refer to P. 20 and P. 35
Rod tip overhang distance	100 mm or less
Ambient operating temperature, humidity	0 to $40^{\circ} \mathrm{C}, 85 \%$ RH or less (Non-condensing)

(*1) The value at lead 20 is shown in []. (*2) Accuracy of rod displacement in rotating direction when no load is received.
Offset distance at end of rod (100 mm or less)

downloaded from the website．WWW．robocylinder．de
＊1 During home return，be careful to avoid interference from peripheral objects because the slider travels until the mechanical end．
＊2 The orientation of width across flats varies depending on the product．
the actuator is installed using the front housing and flange，make sure the actuator will not receive any external force． （For details，refer to＂Notes on Installing Rod Actuators＂on P．31．） ME：Mechanical end SE：Stroke end

■ Rod Deflection of RCP5－RA6C（Reference Values）

Dimensions and Mass by Stroke

Stroke		65	115	165	215	265	315	365	415
L	Without brake	332	382	432	482	532	582	632	682
	With brake	371.5	421.5	471.5	521.5	571.5	621.5	671.5	721.5
A		0	100	100	200	200	300	300	400
B		0	85	85	185	185	285	285	385
C		1	1	2	2	3	3	4	4
D		4	4	6	6	8	8	10	10
E		0	0	0	1	1	2	2	3
F		4	6	6	8	8	10	10	12
G		0	1	1	1	1	1	1	1
H		2	3	3	3	3	3	3	3
J		172	222	272	322	372	422	472	522
K		219.5	269.5	319.5	369.5	419.5	469.5	519.5	569.5
Allowable static load at end of rod（ N ）		113.8	92.6	78.0	67.3	59.0	52.5	47.2	42.8
Allowable dynamic load at end of rod（N）	Load offset Omm	45.7	36.3	29.8	25.1	21.6	18.8	16.6	14.7
	Load offset 100 mm	32.1	28.3	24.6	21.5	18.9	16.7	14.9	13.4
Allowable static torque at end of rod（ Nm ）		11.5	9.4	7.9	6.8	6.0	5.4	4.9	4.5
Allowable dynamic torque at end of rod（Nm）		3.2	2.8	2.5	2.1	1.9	1.7	1.5	1.3
Mass（kg）	Without brake	1.8	2.0	2.2	2.4	2.6	2.9	3.1	3.3
	With brake	2.0	2.2	2.4	2.6	2.8	3.1	3.3	3.5

Applicable Controller
RCP5 series actuators can be operated with the controller indicated below．Select the type according to your intended application．

Name	External view	Model number	Features	Maximum number of positioning points	Input power	Power supply capacity	Reference page
Positioner type		PCON－CA－42PWAI－NP－$\square-0-\square$ PCON－CA－42PWAI－PN－$-0-\square$	Equipped with a high－output driver Positioner type based on PIO control	512 points	DC24V	Refer to P． 46	Refer to P． 39
Pulse－train type		PCON－CA－42PWAI－PLN－$\square-0-\square$ PCON－CA－42PWAI－PLP－$\square-0-\square$	Equipped with a high－output driver Pulse－train input type	－			
Field network type		PCON－CA－42PWAI－（1）－0－0－\square	Equipped with a high－output driver Supporting major field networks	768 points			
Position controller， 8－axis type	1178	MSEP－C－\square－42PWAl～$\square-\square-0$	Positioner type that accepts connection of up to eight axes．	3 points／256 points		Refer to P． 55	Refer to P． 47
6 －axis type with I／0 control function	\#	MSEP－LC－■－42PWAI～ロ－ロ－0－ロ（＊） ${ }^{*}$（）MSEP－LC coming soon with CE conformity．	Axes can be moved and $I / 0$ signal turned ON／OFF using a ladder logic program．	256 points			

[^1]
RCP 5-RA7C

Built-in guide mechanism

RoHS

(1) The payload in "Actuator Specifications" represents the maximum values, but the payload of a specific model varies depending on the acceleration. For details, refer to "Selection Guideline" (Table of RCP5 Payload by Speed/Acceleration) on pp. 33 to 34.
(2) Refer to P. 31 for the push-motion operation.

■ Correlation Diagrams of Speed and Payload
(1) High output enabled (PowerCon) - PCON-CA, MSEP-C/LC connected

(2) High output disabled (standard) - PCON-CA, MSEP-C/LC connected

Actuator Specifications						
- Lead and Payload						
Model number	$\begin{array}{\|l\|} \hline \text { Lead } \\ (\mathrm{mm}) \\ \hline \end{array}$	High output setting	Max. P	ayload Vericial (ko	$\begin{aligned} & \text { Max. push } \\ & \text { force (N) } \end{aligned}$	Stroke (mm)
RCP5-RATC-WA-56P-24- (1)-P3- (2)-3	24	Enabled	20	3	182	$\begin{gathered} 70,520 \\ \text { (every } 50 \mathrm{~mm} \text {) } \end{gathered}$
		Disabled	18	3		
RCP5-RATC-WA-56-16-(1)-P3-(2)-3	16	Enabled	50	8	273	
		Disabled	40	5		
RCP5-RA7C-WA-56P-8- 1 - P3- (2)-3	8	Enabled	60	18	547	
		Disabled	50	17.5		
RCP5-RA7C-WA-56P-4-(1)-P3-20-3	4	Enabled	80	28	1094	
		Disabled	55	26		

Stroke and Maximum Speed		The values in $<>$ apply when the actuator is used verically. (unit: mm / s
Lead (mm)	High output setting setting	$\begin{gathered} \hline 70 \sim 520 \\ \text { (every } 50 \mathrm{~mm} \text {) } \end{gathered}$
24	Enabled	$\begin{gathered} 800 \\ <600> \end{gathered}$
	Disabled	$\begin{gathered} 600 \\ <400> \end{gathered}$
16	Enabled	$\begin{gathered} 700 \\ <560> \end{gathered}$
	Disabled	420
8	Enabled	420
	Disabled	210
4	Enabled	210
	Disabled	140

Code explanation (1) Stroke (2) Cable ength (3) Options

Cable Length	
Type	Cable symbol
Standard type	$\mathrm{P}(1 \mathrm{~m})$
	$\mathrm{S}(3 \mathrm{~m})$
	M (5m)
Special length	X06(6m) ~ X10(10m)
	X11(11m) ~ X15(15m)
	X16(16m) ~ X20(20m)
Robot cable	R01(1m) ~ R03(3m)
	R04(4m) ~ R05(5m)
	R06(6m) ~ R 10(10m)
	R11(11m) ~ R15(15m)
	R16(16m) ~ R20(20m)

Option

Name	Option code	See page	
Brake	B	\rightarrow P.10	
Flange	FL	$\rightarrow P$	
Tip adapter (flange)	FFA	\rightarrow P. 59	
Tip adapter (internal thread)	NFA	\rightarrow P. 60	
Tip adapter (keyway)	KFA		
Non-motor end specification	NM	\rightarrow P.	\rightarrow

Actuator Specifications
Item Drive system Ball screwø 12 mm , rolled C10 Positioning repeatability (${ }^{*} 1$) \pm 0.02 mm [$\pm 0.03 \mathrm{~mm}]$ Lost motion 0.1 mm or less Rod $\varnothing 30 \mathrm{~mm}$ Aluminum Rod non-rotation precision (*2) ± 0 deg Allowable rod load mass Refer to P. 22 and P. 35 Rod tip overhang distance 100 mm or less Ambient operating temperature, humidity 0 to $40^{\circ} \mathrm{C}, 85 \%$ RH or less (Non-condensing)
(*1) The value at lead 24 is shown in []. (*2) Accuracy of rod displacement in rotating direction when no load is received.

Offset distance at end of rod (100 mm or less)

www．robocylinder．de

$\underset{\text { CAD }}{2 \mathrm{D}}$
＊1 During home return，be careful to avoid interference from peripheral objects because the slider travels until the mechanical end
＊2 The orientation of the width across flats varies depending on the product．
3 If the actuator is installed using the front housing and flange，make sure the actuator will not receive any external force．
（For details，refer to＂Notes on Installing Rod Actuators＂on P．31．）
ME：Mechanical end
SE：Stroke end

Rod Deflection of RCP5－RA7C（Reference Values）

Stroke		70	120	170	220	270	320	370	420	470	520
L	Without brake	384	434	484	534	584	634	684	734	784	834
	With brake	434	484	534	584	634	684	734	784	834	884
A		0	100	100	200	200	300	300	400	400	500
B		0	85	85	185	185	285	285	385	385	485
C		1	1	2	2	3	3	4	4	5	5
D		4	4	6	6	8	8	10	10	12	12
E		0	0	0	1	1	2	2	3	3	4
F		4	6	6	8	8	10	10	12	12	14
G		0	1	1	1	1	1	1	1	1	1
H		2	3	3	3	3	3	3	3	3	3
J		168	218	268	318	368	418	468	518	568	618
K		241	291	341	391	441	491	541	591	641	691
Allowable static load at end of rod（N）		119.2	97.7	82.8	71.6	63.0	56.2	50.6	46.0	42.2	38.8
Allowable dynamic load at end of rod（N）	Load offset Omm	44.3	35.7	29.6	25.2	21.7	19.0	16.8	15.0	13.6	12.2
	Load offset 100 mm	33.9	29.7	25.7	22.4	19.7	17.4	15.5	14.0	12.8	11.5
Allowable static torque at end of rod（ Nm ）		12.1	10.0	8.5	7.4	6.5	5.9	5.3	4.9	4.5	4.1
Allowable dynamic torque at end of rod（Nm）		3.4	3.0	2.6	2.2	2.0	1.7	1.6	1.4	1.3	1.2
Mass（kg）	Without brake	3.3	3.6	3.9	4.2	4.5	4.8	5.1	5.4	5.6	5.9
	With brake	3.8	4.1	4.4	4.7	5.0	5.3	5.6	5.9	6.1	6.4

Applicable Controller							
RCP5 series actuators can be operated with the controller indicated below．Select the type according to your intended application．							
Name	External view	Model number	Features	Maximum number of positioning points	Input power	Power supply capacity	Reference page
Positioner type		PCON－CA－56PWAI－NP－ㅁ－0－\square PCON－CA－56PWAI－PN－ㅁ－0－■	Equipped with a high－output driver Positioner type based on PIO control	512 points	DC24V	Refer to P． 46	Refer to P． 39
Pulse－train type		PCON－CA－56PWAI－PLN－■－0－■ PCON－CA－56PWAI－PLP－ㅁ－0－ㅁ	Equipped with a high－output driver Pulse－train input type	－			
Field network type		PCON－CA－56PWAI－（1）－0－0－\square	Equipped with a high－output driver Supporting major field networks	768 points			
Position controller， 8－axis type	IIII	MSEP－C－\square－56PWAI～$\square-\square-0$	Positioner type that accepts connection of up to eight axes．	3 points／256 points		Refer to P． 55	Refer to P． 47
6－axis type with I／O control function	壮	MSEP－LC－■－56PWAI～ロ－ロ－0－（＊） ${ }^{*}$ ）MSEP－LC coming soon with CE conformity．	Axes can be moved and $I / 0$ signal turned ON／OFF using a ladder logic program．	256 points			

＊In the model numbers shown above，（1）indicates the field network specification（DV，CC，PR，CN，PRT，EC or EP）．

RCP 5-RA8C

Built-in guide mechanism

RoHS

(1) The payload assumes operation at an acceleration of 0.1 G for lead 5 and operation at an acceleration of 0.2 G for lead 10 and lead 20 . The above values are the upper limits of acceleration/deceleration.
(2) Exercise caution that the RA8C requires a dedicated controller (highthrust PCON-CFA).

■ Correlation Diagrams of Speed and Payload

RCP5-RA8C Horizontal PCON-CFA connected

Actuator Specifications

Lead and Payload

Model number	$\begin{aligned} & \hline \text { Lead } \\ & (\mathrm{mm}) \end{aligned}$	Connected controller	Maximum payload		$\begin{array}{\|c\|} \hline \text { Maximum } \\ \text { push force (N) } \end{array}$	Stroke (mm)
			Horizontal (kg)	Verical (kg)		
RCP5-RA8C-WA-60P-20- (1)-P4- (2)-3	20	PCON-CFA	30	5	500	$\begin{gathered} \text { 50~700 } \\ \text { (ever 50 mm) } \end{gathered}$
RCP5-RA8C-WA-60P-10- (1)-P4-(2)-3	10	PCON-CFA	60	40	1000	
RCP5-RA8C-WA-60-5- (1)-P4-(2)-3	5	PCON-CFA	100	70	2000	

Code explanation (1) Stroke (2) cable length (3) Options

Cable Length	
Type	Cable symbol
Standard type	P (1m)
	$\mathrm{S}(3 \mathrm{~m})$
	M (5m)
Special length	X06(6m) ~ X10(10m)
	X11(11m) ~ X 15 (15m)
	$\mathrm{X16}(16 \mathrm{~m}) \sim \mathrm{X} 20$ (20m)
Robot cable	R01(1m) ~ R03(3m)
	R04(4m) ~R05(5m)
	R06(6m) ~ R 10(10m)
	R11(11m) ~ R15(15m)
	R16(16m) ~ R20(20m)

Option

Name	Option code	See page	
Brake	B		
Optional cable exit direction (top)	CJT		
Optional cable exit direction (right)	CJR	\rightarrow	
Optional cable exit direction (left)	CJL		
Optional cable exit direction (bottom)	CJB		
Flange bracket	FL		
Non-motor end specification	NM		

Actuator Specifications

Item	Description
Drive system	Ball screw $\varnothing 16 \mathrm{~mm}$, rolled C10
Positioning repeatability	$\pm 0.02 \mathrm{~mm}$
Lost motion	0.1 mm or less
Rod	$\varnothing 40 \mathrm{~mm}$ Aluminum
Rod non-rotation precision (*1)	± 0 deg
Allowable rod load mass	Refer to P. 24 and P. 35
Rod tip overhang distance	100 mm or less
Ambient operating temperature, humidity	0 to $40^{\circ} \mathrm{C}, 85 \%$ RH or less (Non-condensing)

(*1) Accuracy of rod displacement in rotating direction when no load is received.
Offset distance at end of rod (100 mm or less)

CAD drawings can be
downloaded from the website. WWW. robocylinder. de

*1 During home return, be careful to avoid interference from periphera objects because the slider travels until the mechanical end.
*2 The orientation of the width across flats varies depending on the product.
*3 If the actuator is installed using the front housing and flange, make sure the actuator will not receive any external force. (For details, refer to "Notes on Installing Rod Actuators" on P. 31.) ME: Mechanical end

 50
\square Dimensions with Brake (Optional) ■ 4 Cable Exit Directions (Optional)

Rod Deflection of RCP5-RA8C
(The graph below shows the measurements of how much a horizontally installed rod would deflect when a load is applied to the end of the rod. The measured deflection include the deflection due to the weight of the rod.)

Load at end of rod (N)

■ Dimensions and Mass by Stroke

Stroke		50	100	150	200	250	300	350	400	450	500	550	600	650	700
L	Without brake	439.5	489.5	539.5	589.5	639.5	689.5	739.5	789.5	839.5	889.5	939.5	989.5	1039.5	1089.5
	With brake	488	538	588	638	688	738	788	838	888	938	988	1038	1088	1138
A		0	1	1	2	2	3	3	4	4	5	5	6	6	7
B		115	65	115	65	115	65	115	65	115	65	115	65	115	65
C		4	6	6	8	8	10	10	12	12	14	14	16	16	18
D		115	165	215	265	315	365	415	465	515	565	615	665	715	765
Allowable static load at end of rod (N)		180	150.3	128.9	112.7	99.9	89.7	81.3	74.3	68.3	63.1	58.6	54.6	51.1	47.9
Allowable dynamic load at end of od (N)	Load offset 0 mm	73.6	60.3	51.0	44.1	38.7	34.3	30.7	27.7	25.2	22.5	17.7	14.2	11.6	9.5
	Load offset 100mm	57.0	48.6	42.5	37.8	33.8	30.5	27.6	25.2	23.1	21.2	17.7	14.2	11.6	9.5
Allowable static torque at end of rod (Nm)		18.1	15.2	13.0	11.4	10.2	9.2	8.4	7.7	7.1	6.6	6.1	5.8	5.4	5.1
Allowable dynamic torque at end of rod (Nm)		5.7	9.7	8.5	7.5	6.7	6.0	5.5	5.0	4.6	4.2	3.9	3.6	3.3	3.0
Mass (kg)	Without brake	7.1	7.6	8.0	8.4	8.9	9.3	9.7	10.2	10.6	11.0	11.4	11.9	12.3	12.7
	With brake	8.3	8.7	9.1	9.6	10.0	10.4	10.9	11.3	11.7	12.1	12.6	13.0	13.4	13.9

Applicable Controller							
RCP5 series actuators can be operated with the controller indicated below. Select the type according to your intended application.							
Name	External view	Model number	Features	Maximum number of positioning points	Input power	Power supply capacity	Reference page
Positioner type		PCON-CFA-60PWAI-NP-■-0-PCON-CFA-60PWAI-PN- $\square-0-\square$	Positioner type based on PIO control	512 points	DC24V	Refer to P. 46	Refer to P. 39
Pulse-train type		PCON-CFA-6OPWAI-PLN-■-O-■ PCON-CFA-60PWAI-PLP-ㅁ-0-ㅁ	Pulse-train input type	-			
Field network type		PCON-CFA-60PWAI-(1-0-0-■	Supporting major field networks	768 points			

* In the model numbers shown above, (1) indicates the field network specification (DV, CC, PR, CN, PRT, EC or EP).

RCP5-RA10C

Built-in guide mechanism

RoHS

(1) The payload assumes operation at an acceleration of 0.01 G for lead 2.5, operation at an acceleration of 0.02 G for lead 5 and operation at an acceleration of 0.04 G for lead 10 . The above values are the upper limits of acceleration/deceleration.
(2) Exercise caution that the RA10C requires a dedicated controller (highthrust PCON-CFA).

■ Correlation Diagrams of Speed and Payload
RCP5-RA10C Horizontal PCON-CFA connected

Actuator Specifications

Lead and Payload

Model number	$\begin{aligned} & \hline \text { Lead } \\ & (\mathrm{mm}) \end{aligned}$	Connected controller	Maximum payload		$\begin{array}{\|c\|} \hline \text { Maximum } \\ \text { posshocree (M) } \\ \hline \end{array}$	Stroke (mm)
			Horizontal (ko)	Vericical (kg)		
RCP5-RA10C-WA-86P-10-(1)-P4- 2 (3)-3	10	PCON-CFA	80	80	1500	$\begin{aligned} & 50 \sim 800 \\ & \text { (every } 50 \mathrm{~mm} \text {) } \end{aligned}$
RCP5-RA1OC-WA-86P-5- (1)-P4- (2)-3	5	PCON-CFA	150	100	3000	
RCP5-RA10C-WA-86P-2.5- (1)-P4- (2) - 3	2.5	PCON-CFA	300	150	6000	

\square Stroke and Maximum Speed
The values in <> apply when the actuator

$\begin{aligned} & \hline \text { Lead } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{gathered} \hline 50 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \hline 100 \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{array}{\|c\|} \hline \begin{array}{c} 150 \\ (m m) \end{array} \\ \hline \end{array}$	$\begin{aligned} & 200 \sim 400 \\ & \text { (every } 50 \mathrm{~mm} \text {) } \end{aligned}$	$\begin{aligned} & \hline 450 \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{array}{c\|} \hline 500 \\ (\mathrm{~mm}) \end{array}$	$\begin{array}{\|c\|} \hline 550 \\ (\mathrm{~mm}) \end{array}$	$\begin{array}{\|c\|} \hline 600 \\ (\mathrm{~mm}) \end{array}$	$\begin{array}{\|c\|} \hline 650 \\ (m \mathrm{~m}) \end{array}$	$\begin{aligned} & \hline 700 \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \hline 750 \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \hline 800 \\ & (\mathrm{~mm}) \end{aligned}$
10	117	167	$\begin{array}{\|c\|} \hline 200 \\ <167> \end{array}$	$\begin{gathered} 250 \\ <167> \end{gathered}$			$\begin{array}{\|c\|} \hline 220 \\ <167> \end{array}$	$\begin{array}{\|c\|} \hline 200 \\ <167> \end{array}$	$\begin{array}{\|c\|} \hline 180 \\ <167\rangle \end{array}$	160	140	120
5	83		125		110	90	80	70	60	55	50	45
2.5	63						55	50	45	40	35	30

Code explanation (1) Stroke (2) Cable length (3) Options

Cable Length	
Type	Cable symbol
Standard type	P (1m)
	$\mathrm{S}(3 \mathrm{~m})$
	M (5m)
Special length	X06(6m) ~ X $10(10 \mathrm{~m}$)
	X11(11m) ~ X 15 (15m)
	X16(16m) ~ X20(20m)
Robot cable	R01(1m) ~ R03(3m)
	R04(4m) ~R05(5m)
	R06(6m) ~ R 10(10m)
	R11(11m) ~R15(15m)
	R16(16m) ~ R20(20m)

Actuator Specifications

Item	
Drive system	Ball screw ø20mm (lead 2.5/10mm), $\varnothing 16 \mathrm{~mm}$ (lead 5mm), rolled C10
Positioning repeatability	$\pm 0.02 \mathrm{~mm}$
Lost motion	0.1 mm or less
Rod	$\varnothing 40 \mathrm{~mm}$ Aluminum
Rod non-rotation precision (*1)	± 0 deg
Allowable rod load mass	Refer to P. 26 and P. 35
Rod tip overhang distance	100 mm or less
Ambient operating temperature, humidity	0 to $40^{\circ} \mathrm{C}, 85 \%$ RH or less (Non-condensing)

(*1) Accuracy of rod displacement in rotating direction when no load is received.
Offset distance at end of rod (100 mm or less)

CAD drawings can be
downloaded from the website. WWW. robocylinder. de
\square Dimensions with Flange (Optional)

*1 During home return, be careful to avoid interference from peripheral objects because the slider travels until the mechanical end
*2 The orientation of the width across flats varies depending on the product
*3 If the actuator is installed using the front housing and flange, make sure the actuator will not receive any external force. (For details, refer to "Notes on Installing Rod Actuators" on P. 31.)
ME: Mechanical end

4 Cable Exit Directions (Optional)

■ Rod Deflection of RCP5-RA10C
The , praph below shows the measurements of how much a horizontally installed rod would doftect when a load is applifed to the end of the rod
The measured deflection include the deflection due to the weightof the ro The measured deflection include the deflection due to the weight of the rod.)

\square Dimensions and Mass by Stroke

Stroke		50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
L	Without brake	485	535	585	635	685	735	785	835	885	935	985	1035	1085	1135	1185	1235
	With brake	545	595	645	695	745	795	845	895	945	995	1045	1095	1145	1195	1245	1295
A		0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8
	B	132	82	132	82	132	82	132	82	132	82	132	82	132	82	132	82
C		4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20
D		132	182	232	282	332	382	432	482	532	582	632	682	732	782	832	882
Allowable static load at end of rod (N)		316.9	268.4	232.6	205.1	183.4	165.7	151.0	138.6	128.1	119.0	111.0	103.9	97.7	92.1	87.0	82.5
$\begin{array}{\|l\|} \hline \text { Allowazbe dynamic } \\ \text { load atend of tod (N) } \end{array}$	Load offset Omm	119.1	99.1	84.7	73.8	65.3	58.5	52.8	38.7	29.2	22.5	17.7	14.2	11.6	9.5	8.0	6.7
	Load offset 100 mm	100.7	85.9	74.9	66.3	59.3	53.6	48.8	38.7	29.2	22.5	17.7	14.2	11.6	9.5	8.0	6.7
Allowable staic torque at end of rod (Nm)		31.8	27.0	23.4	20.7	18.5	16.8	15.3	14.1	13.1	12.2	11.4	10.7	10.1	9.6	9.1	8.6
Allowable dyynmic torque a end of of ((Nm)		10.1	9.7	8.5	7.5	6.7	6.0	5.5	5.0	4.6	4.2	3.9	3.6	3.3	3.0	3.0	3.0
Mass (kg)	Without brake	11.5	12.2	12.9	13.6	14.3	15	15.7	16.4	17.1	17.8	18.5	19.2	19.9	20.6	21.3	22
	With brake	13.1	13.8	14.5	15.2	15.9	16.6	17.3	18	18.7	19.4	20.1	20.8	21.5	22.2	22.9	23.6

Correlation Diagrams of Vertical Load and Traveling Life

Since the RCP5-RA10C has a greater maximum thrust than other types, its service life varies significantly depending on the payload and push force applied when the actuator is installed vertically. When selecting an appropriate type from the correlation diagram of speed and payload or correlation diagram of push force and current-limiting value, check its traveling life on the correlation diagram of payload and service life as well as on the correlation diagram of push force and service life.
Note
The rated value represents the maximum value at a traveling life of 5000 km . The greatest value is the maximum value at which the actuator can operate.
Take note that, if an actuator is operated beyond its rating, its service life will drop as shown by the applicable graph on the right.

Applicable Controller							
RCP5 series actuators can be operated with the controller indicated below. Select the type according to your intended application.							
Name	External view	Model number	Features	Maximum number of positioning points	Input power	Power supply capacity	Reference page
Positioner type		$\begin{aligned} & \text { PCON-CFA-86PWAI-NP- }-0-\square-\square \\ & \text { PCON-CFA-86PWAI-PN- }-0-\square \end{aligned}$	Positioner type based on PIO control	512 points			
Pulse-train type		PCON-CFA-86PWAI-PLN-ロ-0-PCON-CFA-86PWAI-PLP-ㅁ-0-	Pulse-train input type	-	DC24V	Refer to P. 46	Refer to P. 39
Field network type	$1)$	PCON-CFA-86PWAI-(1-0-0- \square	Supporting major field networks	768 points			

[^2]
RCP 5-RA4R Actuator Width $40 \mathrm{~mm}, 24 \mathrm{~V}$ Pulse Motor

Radial Load Applicable

(E RoHS

The figure above is the motor side-mounted to the left (ML).

(1) The actuator specification displays the payload's maximum value, but it will vary depending on the acceleration. Please refer to the "Selection Guidelines" (RCP5 Payload by Speed/Acceleration Table) on P. 26-2.
(2) Please refer to P. 31 for push-motion operation.
(3) The radial cylinder is equipped with a built-in guide. Please refer to the graphs shown in P. 35 and after for the allowable load mass.

■Correlation Diagrams of Speed and Payload

(1) High-output enabled with PCON-CA, MSEP, MSEL connected

(2) High-output disabled with PCON-CA, MSEP connected

Actuator Specifications										
■Lead and Payload							\square Stroke and Maximum Speed			(Unit: mm/s)
Model number	Lead (mm)	Connected controller	Maximum payload		Maximum push force (N)	Stroke (mm)	$\begin{aligned} & \text { Lead } \\ & (\mathrm{mm}) \end{aligned}$	Connected controller	$\begin{gathered} \text { 60~360 } \\ \text { (Every 50mm) } \end{gathered}$	$\begin{gathered} 410 \\ (\mathrm{~mm}) \end{gathered}$
			Horizontal (kg)	Vertical (kg)						
RCP5-RA4R-WA-35P-16-(1)-P3-(2)-(3)	16	High-output enabled	5	1	48	$\begin{gathered} 60 \sim 410 \\ \text { (Every } \\ 50 \mathrm{~mm} \text {) } \end{gathered}$	16	High-output enabled	840	
		High-output disabled						High-output disabled		
RCP5-RA4R-WA-35P-10-(1)-P3-(2)-(3)	10	High-output enabled	12	2.5	77		10	High-output enabled	610	
		High-output disabled	10	2				High-output disabled		
RCP5-RA4R-WA-35P-5-(1)-P3-(2)-3	5	High-output enabled	25	5	155		5	High-output enabled	350	340
		High-output disabled	22					High-output disabled	260	
RCP5-RA4R-WA-35P-2.5-(1)-P3-(2)-(3)	2.5	High-output enabled	40	10	310		2.5	High-output enabled	175	170
		High-output disabled	35					High-output disabled	130	

Legend: (1) Stroke (2) Cable length (3) Options

Options
Name Option code Reference page Brake B \rightarrow P. 10 Cable exit direction (Top) CJT \rightarrow P. 10 Cable exit direction (Outside) CJO \rightarrow P. 10 Cable exit direction (Bottom) CJB \rightarrow P. 10 Flange (*1) (*2) FL \rightarrow P. 10 Tip adapter (Flange) (*2) FFA \rightarrow P. 10 Tip adapter (Internal thread) (*2) NFA \rightarrow P. 10 Tip adapter (Keyway) (*2) KFA \rightarrow P. 10 Motor side-mounted to the left (Standard) ML \rightarrow P. 10 Motor side-mounted to the right MR \rightarrow P. 10 Non-motor end specification NM \rightarrow P. 10

Actuator Specifications

Item	
Drive system	Ball screw $\varnothing 8 \mathrm{~mm}$, rolled C10
Positioning repeatability	$\pm 0.02 \mathrm{~mm}$
Lost motion	0.1 mm or less
Rod	$\emptyset 20 \mathrm{~mm}$ Aluminum
Rod non-rotation precision (*1)	± 0 deg
Allowable load and torque on rod tip	Refer to table in the page on the right, refer to P. 35
Rod tip overhang distance	100 mm or less
Ambient operating temperature, humidity	0 to $40^{\circ} \mathrm{C}, 85 \%$ RH or less (Non-condensing)
(*1) Rod's angular displacement in rotational direction with no applied load is shown.	

(*1) Rod's angular displacement in rotational direction with no applied load is shown.
Offset distance at end of rod (100 mm or less)
Load at end of rod

*1) Not available for strokes of 60 mm (standard) and 60~110mm (with brake).
*2) Please be careful of nearby objects when selecting the front flange (FL) or tip adapter (FFA/NFA/KFA) option, as selecting a short stroke may cause some interference between the cable and installation surface (with FL option) or work piece (with FFA/NFA/KFA option) for certain strokes.
When the rod is returning to its home position, please be careful of interference from surrounding objects, as it will travel until it reaches the ME.

surface
Detailed view of Z
2 The direction of width across flats varies depending on the product.
3 If the actuator is installed using the front housing and flange, make sure the actuator will not receive any external force.
ME:Mechanical end
SE: Stroke end

(Option code: CJB) *The figure above is for the motor side-mounted to the left (ML).
■ Rod Deflection of RCP5-RA4R (Reference Values)

	Stroke	60	110	160	210	260	310	360	410
	L	194	244	294	344	394	444	494	544
	A	50	100	100	200	200	300	300	400
	B	35	85	85	185	185	285	285	385
	C	25	50	50	50	50	50	50	50
	D	0	0	1	1	2	2	3	3
	E	50	100	50	100	50	100	50	100
	F	8	8	10	10	12	12	14	14
	G	-	1	1	2	2	3	3	4
	H	50	50	100	50	100	50	100	50
	J	134	184	234	284	334	384	434	484
	K	164	214	264	314	364	414	464	514
	M	6	6	6	8	8	10	10	12
Allowable static load on rod tip (N)		55.8	44.6	37.1	31.7	27.6	24.3	21.7	19.5
Allowable	Load offset 0 mm	25.4	19.5	15.5	12.8	10.8	9.2	7.9	6.9
dynamic load on rod tip (N)	Load offset 100 mm	16.5	14.5	12.4	10.7	9.2	8.0	7.0	6.2
Allowable static torque on rod tip ($\mathrm{N} \cdot \mathrm{m}$)		5.6	4.5	3.8	3.2	2.8	2.5	2.3	2.1
Allowable dynamic torque on rod tip ($\mathrm{N} \cdot \mathrm{m}$)		1.7	1.5	1.2	1.1	0.9	0.8	0.7	0.6
Mass (kg)	Without brake	1.4	1.5	1.6	1.7	1.9	2.0	2.1	2.2
	With brake	1.6	1.7	1.8	1.9	2.1	2.2	2.3	2.4

(Note) MSEP-C/LC is available for high output only if "High-Output Specification" (PowerCon) is selected in the options.

RCP5-RA6R Actuator Width 58 mm , 24 V Pulse Motor

Radial Load Applicable

(\in RoHs

The figure above is the motor side-mounted to the left (ML)

(1) The actuator specification displays the payload's maximum value, but it will vary depending on the acceleration.
Please refer to the "Selection Guidelines" (RCP5 Payload by Speed/Acceleration Table) on P. 26-4.
(2) Please refer to P. 31 for push-motion operation.
(3) The radial cylinder is equipped with a built-in guide. Please refer to the graphs shown in P. 35 and after for the allowable load mass.

-Correlation Diagrams of Speed and Payload

(1) High-output enabled with PCON-CA, MSEP, MSEL connected

(2) High-output disabled with PCON-CA, MSEP connected

downloaded from the website. www.robocylinder.de

■Cable Exit Direction (Option)

Rod Deflection of RCP5-RA6R (Reference Values)

■Dimensions and Mass by Stroke

	Stroke	65	115	165	215	265	315	365	415
	L	228	278	328	378	428	478	528	578
	A	0	100	100	200	200	300	300	400
	B	0	85	85	185	185	285	285	385
	c	1	1	2	2	3	3	4	4
	D	4	4	6	6	8	8	10	10
	E	0	0	0	1	1	2	2	3
	F	4	6	6	8	8	10	10	12
	G	0	1	1	1	1	1	1	1
	H	2	3	3	3	3	3	3	3
	J	172	222	272	322	372	422	472	522
	K	202.3	252.3	302.3	352.3	402.3	452.3	502.3	552.3
Allowable static load on rod tip (N)		113.8	92.6	78.0	67.3	59.0	52.5	47.2	42.8
$\begin{array}{\|c\|} \hline \text { Allowable } \\ \text { dynamic load } \\ \text { on rod tip (N) } \end{array}$	Load offset 0 mm	45.7	36.3	29.8	25.1	21.6	18.8	16.6	14.7
	Load offset 100 mm	32.1	28.3	24.6	21.5	18.9	16.7	14.9	13.4
Allowable static torque on rod tip ($\mathrm{N} \cdot \mathrm{m}$)		11.5	9.4	7.9	6.8	6.0	5.4	4.9	4.5
Allowable dynamic torque on rod tip ($\mathrm{N} \cdot \mathrm{m}$)		3.2	2.8	2.5	2.1	1.9	1.7	1.5	1.3
Mass (kg)	Without brake	2.2	2.4	2.6	2.8	3.0	3.3	3.5	3.7
	With brake	2.4	2.6	2.8	3.0	3.2	3.5	3.7	3.9

High output enabled						Lead 20			High output enabled Lead 12									High output enabled						Lead 6			High output enabled						Lead 3		
Oirentation	Horizontal					Vertical			Orientation	Horizontal					Vertical			Orientation	Horizontal					Vertical			Orientation	Horizontal					Vertical		
Speed (mm / s)	Acceleration (G)								Speed$(\mathrm{mm} / \mathrm{s})$	Acceleration (G)								Speed (mm / s)	Acceleration (G)								Speed (mm / s)	Acceleration (G)							
	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5		0.1	0.3	0.5	0.7	1	0.1	0.3	0.5		0.1	0.3	0.5	0.7	1	0.1	0.3	0.5		0.1 1	0.3	0.5	0.7	1	0.1	0.3	0.5
0	6	6	6	5	5	1.5	1.5	1.5	0	25	25	18	16	12	4	4	4	0	40	40	35	30	25	10	10	10	0	60	60	50	45	40	20	20	20
160	6	6	6	5	5	1.5	1.5	1.5	200	25	25	18	16	10	4	4	4	200	40	40	30	25	20	10	10	10	100	60	60	50	45	40	20	20	20
320	6	6	6	5	3	1.5	1.5	1.5	300	25	25	18	12	8	4	4	4	250	40	40	27.5	22.5	18	10	9	8	125	60	60	50	40	30	18	14	10
480	6	6	6	5	3	1.5	1.5	1.5	400	20	20	14	10	6	4	4	4	300	40	35	25	20	14	6	6	6	150	60	50	40	30	25	14	10	6
640		6	4	3	2		1.5	1.5	500	15	15	8	6	4	4	3.5	3	350	40	30	14	12	10	5	5	5	175	60	40	35	25	20	12	6	5
800		4	3				1	1	600	10	10	6	3	2	4	3	2	400	30	18	10	6	5	4	3	3	200	60	35	30	20	14	8	5	4.5
									700		6	2				2	1	450	25	8	3			2	2	1	225	40	16	16	10	6	5	5	4
High output disabled Lead 20									High output disabled Lead 12									High output disabled Lead 6									High output disabled Lead 3								
Oinentation	Horizontal				Vertical				Orientation	Horizontal				Vertical				Orientation Speed $(\mathrm{mm} / \mathrm{s})$ 0	Horizontal				Vertical				Orientation Speed $(\mathrm{mm} / \mathrm{s})$	Horizontal				Vertical			
	Acceleration (G)								$\begin{aligned} & \hline \begin{array}{l} \text { Speed } \\ (\mathrm{mm} / \mathrm{s}) \end{array} \\ & \hline \end{aligned}$	Acceleration (G)									Acceleration (G)									Acceleration (G)							
(mm/s)	0.2	0.3	0.5	0.7	0.1	0.2				0.2	0.3	0.5	0.7	0.1	0.2				0.2	0.3	0.5	0.7	0.1	0.2				0.2	0.3	0.5	0.7	0.1	0.2		
0		6				1.5			0	25					4			0	40					10			0	40					20		
160		6				1.5			100	25					4			50	40					10			25	40					20		
320		6				1.5			200	25					4			100	40					10			50	40					16		
480		4				1			300	20					3			150	40					8			75	40					12		
640		3				0.5			400	10					2			200	35					5			100	40					9		
									500	5					1			250	10					3			125	40					5		

[^3]
RCP5-RA7R Actuator Width 73mm, 24V Pulse Motor

Radial Load Applicable

(\in RoHS

The figure above is the motor side-mounted to the left (ML)

(1) The actuator specification displays the payload's maximum value, but it will vary depending on the acceleration.
Please refer to the "Selection Guidelines" (RCP5 Payload by Speed/Acceleration Table) on P. 26-6.
(2) Please refer to P. 31 for push-motion operation.
(3) The radial cylinder is equipped with a built-in guide. Please refer to the graphs shown in P. 35 and after for the allowable load mass.

■Correlation Diagrams of Speed and Payload

(2) High-output disabled with PCON-CA, MSEP connected

RCP5-RA7R, Horizontal mount

RCP5-RA7R, Vertical mount

Actuator Specifications

-Lead and Payload

Model number	Lead (mm)	Connected controller	Maximum payload		$\begin{array}{\|c\|} \hline \text { Maximum } \\ \text { push force (N) } \end{array}$	Stroke (mm)
			Horizond (kg)	Vertical (k)		
RCP5-RA7R-WA-56P-24-(1)-P3-3)-3	24	High-output enabled	20	3	182	$\begin{aligned} & 70 \sim 520 \\ & (\text { Every } \\ & 50 \mathrm{~mm}) \end{aligned}$
		High-outputdisabled	18	3		
RCP5-RA7R-WA-56P-16-(1)-P3-(2)-3	16	High-outputenabled	50	8	273	
		High-output disabled	40	5		
RCP5-RA7R-WA-56P-8-(1)-P3-(2)-3	8	High-outputenabled	60	18	547	
		High-output disabled	50	17.5		
RCP5-RA7R-WA-56P-4-(1)-P3-3)-3	4	High-outputenabled	80	28	1094	
		High-output disabled	55	26		

■Stroke and Maximum Speed Values in brackets < > are for vertical use. (Unit: mm / s)

Lead (mm)	Connected controller	$70 \sim 520$ (Every 50 mm)
24	High-output enabled	800 High-output disabled
	High-output enabled	600
	High-output disabled	560
8	High-output enabled	420
	High-output disabled	420
4	High-output enabled	210
	High-output disabled	175
		140

Legend: (7) Stroke (2) Cable length (3) Options

Options
Name Option code Reference page Brake B \rightarrow P. 10 Cable exit direction (Top) CJT \rightarrow P. 10 Cable exit direction (Outside) CJO \rightarrow P. 10 Cable exit direction (Bottom) CJB \rightarrow P. 10 Flange (*1) (*2) FL \rightarrow P. 10 Tip adapter (Flange) (*2) FFA \rightarrow P. 10 Tip adapter (Internal thread) (*2) NFA \rightarrow P. 10 Tip adapter (Keyway) (*2) KFA \rightarrow P. 10 Motor side-mounted to the left (Standard) ML \rightarrow P. 10 Motor side-mounted to the right MR \rightarrow P. 10 Non-motor end specification NM \rightarrow P. 10

CAD drawings can be downloaded from the website. www. robocylinder.de

■ Rod Deflection of RCP5-RA7R

	Stroke	70	120	170	220	270	320	370	420	470	520
	L	258	308	358	408	458	508	558	608	658	708
	A	0	100	100	200	200	300	300	400	400	500
	B	0	85	85	185	185	285	285	385	385	485
	C	1	1	2	2	3	3	4	4	5	5
	D	4	4	6	6	8	8	10	10	12	12
	E	0	0	0	1	1	2	2	3	3	4
	F	4	6	6	8	8	10	10	12	12	14
	G	0	1	1	1	1	1	1	1	1	1
	H	2	3	3	3	3	3	3	3	3	3
	J	168	218	268	318	368	418	468	518	568	618
	K	227	277	327	377	427	477	527	577	627	677
Allowable static load on rod tip (N)		119.2	97.7	82.8	71.6	63.0	56.2	50.6	46.0	42.2	38.8
Allowable	Load offset 0 mm	44.3	35.7	29.6	25.2	21.7	19.0	16.8	15.0	13.6	12.2
dynamic load on rod tip (N$)$	Load offset 100 mm	33.9	29.7	25.7	22.4	19.7	17.4	15.5	14.0	12.8	11.5
Allowable static torque on rod tip ($\mathrm{N} \cdot \mathrm{m}$)		12.1	10.0	8.5	7.4	6.5	5.9	5.3	4.9	4.5	4.1
Allowable dynamic torque on rod tip ($\mathrm{N} \cdot \mathrm{m}$)		3.4	3.0	2.6	2.2	2.0	1.7	1.6	1.4	1.3	1.2
Mass (kg)	Without brake	4.0	4.3	4.6	4.9	5.2	5.5	5.8	6.1	6.3	6.6
	With brake	4.5	4.8	5.1	5.4	5.7	6.0	6.3	6.6	6.8	7.1

High output enabled Lead 24									High output enabled Lead 16									High output enabled Lead 8									High output enabled Lead 4								
Oinentation	Horizontal					Vertical			Oieientaition	Horizontal					Vertical			Oinentaion	Horizontal					Vertical			Orientation	Horizontal					Vertical		
Speed (mm / s)	Acceleration (G)								$\begin{array}{c\|} \hline \text { Speed } \\ (\mathrm{mm} / \mathrm{s}) \end{array}$	Acceleration (G)								Speed (mm/s)	Acceleration (G)								$\begin{gathered} \text { Speed } \\ (\mathrm{mm} / \mathrm{s}) \\ \hline \end{gathered}$	Acceleration (G)							
	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5		0.1	0.3	0.5	0.7	1	0.1	0.3	0.5		0.1	0.3	0.5	0.7	1	0.1	0.3	0.5		0.1	0.3	0.5	0.7	1	0.1	0.3	0.5
0	20	20	18	15	12	3	3	3	0	50	50	40	35	30	8	8	8	0	60	60	50	45	40	18	18	18	0	80	80	70	65	60	28	28	28
200	20	20	18	15	12	3	3	3	140	50	50	40	35	30	8	8	8	70	60	60	50	45	40	18	18	18	35	80	80	70	65	60	28	28	28
400	20	20	18	15	10	3	3	3	280	50	50	35	25	20	8	7	7	140	60	60	50	45	40	16	16	12	70	80	80	70	65	60	28	28	28
600	15	14	9	7	4	3	3	2	420	50	25	18	14	10	4.5	4.5	4	210	60	60	40	31	26	10	10	9	105	80	80	60	50	40	22	20	18
800		3	1						560	12	10	5	3	2	2	1	1	280	60	26	16	10	8	8	5	3	140	80	50	10	6	6	13	8	3
																		350	30					3	1		175	40	5				4		
																		420	2																

High output disabled Lead 24

Oientation	Horizontal				Vertical	
Speed	Acceleration (G)					
$(\mathrm{mm} / \mathrm{s})$	0.2	0.3	0.5	0.7	0.1	0.2
0		18				3
200		18				3
400		10				2
600		1				

High output disabled Lead 16

Onennation	Horizontal				Vertical	
Speed	Acceleration (G)					
(mm/s)	0.2	0.3	0.5	0.7	0.1	0.2
0	40					5
140	40					5
280	30					3
420	6					0.5

High output disabled Lead 8 \begin{tabular}{c|c|c|}
\hline Orientation \& Horizontal \& Vertical

\hline Speed \& Acceleration (G)

\hline Speed \& \multicolumn{5}{|c|}{ Acceleration (G) }

\cline { 2 - 6 }$(\mathrm{mm} / \mathrm{s})$ \& 0.2 \& 0.3 \& 0.5 \& 0.7 \& 0.1 \& 0.2

\hline 0 \& 50 \& \& \& \& \& 17.5

\hline 70 \& 50 \& \& \& \& \& 17.5

\hline 140 \& 50 \& \& \& \& \& 7

\hline 210 \& 30 \& \& \& \&

\hline
\end{tabular}

(Note) MSEP-C/LC is available for high output only if "High-Output Specification" (PowerCon) is selected in the options.

High output disabled Lead 4 | Orientaion | Horizontal | | | | Vertical | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Speed | Acceleration (G) | | | | | |
| $(\mathrm{mm} / \mathrm{s})$ | 0.2 | 0.3 | 0.5 | 0.7 | 0.1 | 0.2 |
| 0 | 55 | | | | | 26 |
| 35 | 55 | | | | | 26 |
| 70 | 55 | | | | | 15 |
| 105 | 55 | | | | | 4 |
| 140 | 5 | | | | 0.5 | |

RCP 5-RA8R

RoboCyinder, High-thrust Rod Type, Side Mounted Motor Type, Actuator Wiath 88mm, 24-V Pulse Motor

Built-in guide mechanism

RoHS

(1) The payload assumes operation at an acceleration of 0.1 G for lead 5 and operation at an acceleration of 0.2 G for lead 10 and lead 20. The above values are the upper limits of acceleration/deceleration.
(2) Exercise caution that the RA8R requires a dedicated controller (highthrust PCON-CFA)

■ Correlation Diagrams of Speed and Payload RCP5-RA8R Horizontal PCON-CFA connected

Actuator Specifications

Lead and Payload

Model number	$\begin{aligned} & \hline \text { Lead } \\ & (\mathrm{mm}) \\ & \hline \end{aligned}$	Connected controller	Maximum payload		$\begin{array}{\|l\|} \hline \text { Maximumpsth } \\ \text { force (I) } \\ \hline \end{array}$	Stroke (mm)
			Horizontal (kg)	Verical (kg)		
RCP5-RA8R-WA-6OP-20-(1)-P4-(2)-3	20	PCON-CFA	30	5	500	$\left\lvert\, \begin{gathered} 50 \sim 700 \\ \text { (every } 50 \mathrm{~mm}) \end{gathered}\right.$
RCP5-RABR-WA-6OP-10-(1)-P4-2 - 3	10	PCON-CFA	60	40	1000	
RCP5-RA8R-WA-60P-5-(1)-P4- (2)- 3	5	PCON-CFA	100	70	2000	

\square Stroke and Maximum Speed (unit: mm/s)

Lead (mm)	50 $(\mathrm{~mm})$	$100 \sim 450$ $(\mathrm{~mm})$	500 $(\mathrm{~mm})$	550 $(\mathrm{~mm})$	600 $(\mathrm{~mm})$	650 $(\mathrm{~mm})$	700 $(\mathrm{~mm})$
20	280	400	360	320	280	240	220
10	200	180	160	140	120	110	
5	100	90	80	70	60	55	

Code explanation (1) Stroke (2) cable length (3) Options

Cable Length	
Type	Cable symbol
Standard type	$\mathrm{P}(1 \mathrm{~m})$
	S(3m)
	M (5m)
Special length	X06(6m) ~ X10(10m)
	X11(11m) ~ X 15 (15m)
	X16(16m) ~ X20(20m)
Robot cable	R01(1m) ~ R03(3m)
	R04(4m) ~R05(5m)
	R06(6m) ~ R 10(10m)
	R11(11m) ~ R15(15m)
	R16(16m) ~R20(20m)

Option			
Name	Option code	See page	
Brake	B	$\rightarrow \mathrm{P} .10$	
Optional cable exit direction (top)	CJT		
Optional cable exit direction (outside)	CJO		
Optional cable exit direction (bottom)	CJB		
Motor side-mounted to the left (standard)	ML		
Motor side-mounted to the right	MR		
Flange bracket	FL		
Non-motor end specification	NM		

Actuator Specifications

Item	Description
Drive system	Ball screw $\varnothing 16 \mathrm{~mm}$, rolled C10
Positioning repeatability	$\pm 0.02 \mathrm{~mm}$
Lost motion	0.1 mm or less
Rod	$\varnothing 40 \mathrm{~mm}$ Aluminum
Rod non-rotation precision (*1)	± 0 deg
Allowable rod load mass	Refer to P. 28 and P. 35
Rod tip overhang distance	100 mm or less
Ambient operating temperature, humidity	0 to $40^{\circ} \mathrm{C}, 85 \%$ RH or less (Non-condensing)

$\left.{ }^{*}{ }^{*}\right)$ Accuracy of rod displacement in rotating direction when no load is received.
Offset distance at end of rod (100 mm or less)

*1 During home return be careful to avoid interference from peripheral objects because the slider travels until the mechanical end.
*2 The orientation of the width across flats varies depending on the product.
3 If the actuator is installed using the front housing and flange, make sure the actuator will not receive any external force.
(For details, refer to "Notes on Installing Rod Actuators" on P. 31.)
ME: Mechanical end
SE: Stroke end

Dimensions with Flange (Optional)

4-б9, through

Note
For the specification with brake of $50-\mathrm{mm}$ stroke, a flange is installed in a 90 -degree angle.

Note
If an actuator of lead 5 is installed vertically
varies significantly depending on the paylo
Pay attention to the diagram of payload and service life shown below. (If the actuator is installed horizontally, its service life is not affected by the payload.)

Rod Deflection of RCP5-RA8R
The graph helow shows the measurements of how much a horizontally installed rod would deflect when a load is applied to the end of the rod.

Stroke		50	100	150	200	250	300	350	400	450	500	550	600	650	700
	L	309.5	359.5	409.5	459.5	509.5	559.5	609.5	659.5	709.5	759.5	809.5	859.5	909.5	959.5
A		0	1	1	2	2	3	3	4	4	5	5	6	6	7
B		115	65	115	65	115	65	115	65	115	65	115	65	115	65
C		4	6	6	8	8	10	10	12	12	14	14	16	16	18
D		115	165	215	265	315	365	415	465	515	565	615	665	715	765
Allowable static load at end of rod (N)		180	150.3	128.9	112.7	99.9	89.7	81.3	74.3	68.3	63.1	58.6	54.6	51.1	47.9
Allowable dynamic load at end of rod (N)	Load offset Omm	73.6	60.3	51.0	44.1	38.7	34.3	30.7	27.7	25.2	22.5	17.7	14.2	11.6	9.5
	Load offset 100 mm	57.0	48.6	42.5	37.8	33.8	30.5	27.6	25.2	23.1	21.2	17.7	14.2	11.6	9.5
Allowable static torque at end of rod (Nm)		18.1	15.2	13.0	11.4	10.2	9.2	8.4	7.7	7.1	6.6	6.1	5.8	5.4	5.1
Allowable dynamic torque at end of rod (Nm)		5.7	9.7	8.5	7.5	6.7	6.0	5.5	5.0	4.6	4.2	3.9	3.6	3.3	3.0
Mass (kg)	Without brake	8.6	9.0	9.4	9.8	10.3	10.7	11.1	11.6	12.0	12.4	12.9	13.3	13.7	14.1
	With brake	9.6	10.0	10.4	10.9	11.3	11.7	12.2	12.6	13.0	13.4	13.9	14.3	14.7	15.2

Applicable Controller

RCP5 series actuators can be operated with the controller indicated below. Select the type according to your intended application.

Name	External view	Model number	Features	Maximum number of positioning points	Input power	Power supply capacity	Reference page
Positioner type		PCON-CFA-60PWAI-NP- - $-0-\square$ PCON-CFA-6OPWAI-PN-ロ-0-ם	Positioner type based on PIO control	512 points	DC24V	Refer to P. 46	Refer to P. 39
Pulse-train type		PCON-CFA-60PWAI-PLN-■-0-■ PCON-CFA-60PWAI-PLP-ロ-0-■	Pulse-train input type	-			
Field network type		PCON-CFA-60PWAI-®-0-0-■	Supporting major field networks	768 points			

* In the model numbers shown above, (1) indicates the field network specification (DV, CC, PR, CN, PRT, EC or EP).

RCP5-RA10R

(1) The payload assumes operation at an acceleration of 0.01 G for lead 2.5 , operation at an acceleration of 0.02 G for lead 5 and operation at an acceleration of 0.04 G for lead 10 . The above values are the upper limits of acceleration/deceleration.
(2) Exercise caution that the RA10R requires a dedicated controller (high-

■ Correlation Diagrams of Speed and Payload

RCP5-RA10R Horizontal PCON-CFA connected

Actuator Specifications

- Lead and Payload

Model number	$\begin{array}{\|l\|} \hline \text { Lead } \\ (\mathrm{mm}) \end{array}$	Connected controller	$\begin{array}{l\|} \hline \text { Maximur } \\ \hline \text { Horizontal (kg) } \end{array}$	$\frac{\mathrm{mp} \text { payload }}{\text { Vertical (kg }}$	$\begin{array}{\|c\|} \hline \text { Maximum } \\ \text { push force (N) } \end{array}$	Stroke (mm)
RCP5-RA10R-WA-86P-10-(1)-P4-(2)-3	10	PCON-CFA	80	80	1500	$\begin{gathered} 50 \sim 800 \\ \text { (every } 50 \mathrm{~mm} \text {) } \end{gathered}$
RCP5-RA10R-WA-86P-5 (1 --P4- (2)-3	5	PCON-CFA	150	100	3000	
RCP5-RA10R-WA-86P-2.5-(1)-P4-(2)-3)	2.5	PCON-CFA	300	150	6000	

\square Stroke and Maximum Speed
The values in < > apply when the actuator

$\begin{array}{\|l\|} \hline \text { Lead } \\ (\mathrm{mm}) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 50 \\ (\mathrm{~mm}) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 100 \\ (\mathrm{~mm}) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 150 \\ (\mathrm{~mm}) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 200-400 \\ (\text { (every } 50 \mathrm{~mm}) \end{array}$	$\begin{gathered} 450 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{array}{\|c\|} \hline 500 \\ (\mathrm{~mm}) \end{array}$	$\begin{aligned} & 550 \\ & \hline(\mathrm{~mm} \end{aligned}$	$\begin{gathered} 600 \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} 650 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{array}{\|c\|} \hline 700 \\ (\mathrm{~mm}) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 750 \\ (\mathrm{~mm}) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 800 \\ (\mathrm{~mm}) \\ \hline \end{array}$
10	117	$\begin{gathered} 167 \\ <140> \\ <167 \end{gathered}$		$\begin{gathered} 200 \\ <140\rangle \end{gathered}$					$\begin{array}{\|c\|} \hline 180 \\ <140\rangle \end{array},$	$\begin{gathered} 160 \\ <140\rangle \end{gathered}$	140	120
5	83			100		90	80	70	60	55	50	45
2.5	50								45	40	35	30

Code explanation (1) Stroke (2) Cable length (3) Options

Type	Cable symbol
Standard type	P (1m)
	S(3m)
	M (5m)
Special length	X06(6m) ~ X10(10m)
	X11(11m) ~ X 15 (15m)
	X16(16m) ~ X20(20m)
Robot cable	R01(1m) ~ R03(3m)
	$\mathrm{R} 04(4 \mathrm{~m}) \sim \mathrm{R} 05(5 \mathrm{~m})$
	R06(6m) ~ R 10(10m)
	R11(11m) ~R15(15m)
	R16(16m) ~ R20(20m)

Option
Name Option code See page Brake B Optional cable exit direction (top) CJT Optional cable exit direction (outside) CJO Optional cable exit direction (bottom) CJB \rightarrow P. 10 Motor side-mounted to the eft (standard) ML Motor side-mounted to the right MR Flange bracket FL Non-motor end specification NM

Actuator Specifications

Item	Description
Drive system	Ball screw $\varnothing 20 \mathrm{~mm}$ (lead 2.5/0mm), $\varnothing 16 \mathrm{~mm}($ (lead 5 mm$)$, rolled C10
Positioning repeatability	$\pm 0.02 \mathrm{~mm}$
Lost motion	0.1 mm or less
Rod	$\emptyset 40 \mathrm{~mm}$ Aluminum
Rod non-rotation precision (*1)	± 0 deg
Allowable rod load mass	Refer to P. 30 and P. 35
Rod tip overhang distance	100 mm or less
Ambient operating temperature, humidity	0 to $40^{\circ} \mathrm{C}, 85 \%$ RH or less (Non-condensing)

(*1) Accuracy of rod displacement in rotating direction when no load is received.
Offset distance at end of rod (100 mm or less)

CAD drawings can be
downloaded from the website. WWW.robocylinder.de
*1 During home return, be careful to avoid interference from peripheral objects because the slider travels until the mechanical end.
*2 The orientation of the width across flats varies depending on the product
*3 If the actuator is installed using the front housing and flange, make sure the actuator will not receive any external force. (For details, refer to "Notes on Installing Rod Actuators" on P. 31.) ME: Mechanical end
 SE: Stroke end

$4-\varnothing 11$, through

Note
For the specification with brake of $50-\mathrm{mm}$ stroke, a flange is installed in a 90-degree angle.

■ 3 Cable Exit Directions (Optional)

\square Rod Deflection of RCP5-RA10R

- Dimensions and Mass by Stroke (The graph below shows the measurements of how much a horizontally installed rod would delect when a load is applied to the end of the rod. The measured deflection

Stroke		50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
L		366.5	416.5	466.5	516.5	566.5	616.5	666.5	716.5	766.5	816.5	866.5	916.5	966.5	1016.5	1066.5	. 5
A		0		1	-	2	3	3	4	4	5	5	6	6	7	7	8
B		132	82	132	82	132	82	132	82	132	82	132	82	132	82	132	82
C		4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20
D		132	182	232	282	332	382	432	482	532	582	632	682	732	782	832	882
Allowable static load at end of rod (N)		316.9	268.4	2326	205.1	183.4	165.7	151.0	138.6	128.1	119.0	111.0	103.9	97.7	92.1	87.0	82.5
Allowable dynamic load at end of rod (N)	Load offset Omm	119.1	99.1	84.7	73.8	65.3	58.5	52.8	38.7	29.2	22.5	17.7	14.2	11.6	9.5	8.0	6.7
	Load offset 100mm	100.7	85.9	74.9	66.3	59.3	53.6	48.8	38.7	29.2	22.5	17.7	14.2	11.6	9.5	8.0	6.7
Allowable static torque at end of rod (Nm)		31.8	27.0	23.4	20.7	18.5	16.8	15.3	14.1	13.1	12.2	11.4	10.7	10.1	9.6	9.1	8.6
Alowable dynamic torque at end of rod (Nm)		10.1	9.7	8.5	7.5	6.7	6.0	5.5	5.0	4.6	4.2	3.9	3.6	3.3	3.0	3.0	3.0
Mass (kg)	Without brake	14.6	15.3	16.0	16.7	17.4	18.1	18.8	19.5	20.2	20.9	21.6	22.3	23.0	23.7	24.4	25.1
	With brake	16.2	16.9	17.6	18.3	19.0	19.7	20.4	21.1	21.8	22.5	23.2	23.9	24.6	25.3	26.0	26.7

Correlation Diagrams of Vertical Load and Traveling Life

Since the RCP5-RA10R has a greater maximum thrust than other types, its service life varies significantly depending on the payload and push force applied when the actuator is installed vertically. When selecting an appropriate type from the correlation diagram of speed and payload or correlation diagram of push force and current-limiting value, check its traveling life on the correlation diagram of payload and service life as well as on the correlation diagram of push force and service life.
Note
The rated value represents the maximum value at a traveling life of $5,000 \mathrm{~km}$. The greatest value is the maximum value at which the actuator can operate
Take note that, if an actuator is operated beyond its rating, its service life will drop as shown by the applicable graph on the right.

Rating $51 \mathrm{~kg} \quad$ Maximum 100 kg

| Rating 47 kg Maximum 80 kg |
| :--- | :--- |

Applicable Controller
RCP5 series actuators can be operated with the controller indicated below. Select the type according to your intended application.

Name	External view	Model number	Features	Maximum number of positioning points	Input power	Power supply capacity	Reference page
Positioner type		$\begin{aligned} & \text { PCON-CFA-86PWAI-NP-ロ-0- } \\ & \text { PCON-CFA-86PWAI-PN-■-0 } \end{aligned}$	Positioner type based on PIO control	512 points	DC24V	Refer to P. 46	Refer to P. 39
Pulse-train type		PCON-CFA-86PWAI-PLN-ロ-0-PCON-CFA-86PWAI-PLP-D-0	Pulse-train input type	-			
Field network type		PCON-CFA-86PWAI-(1-0-0- \square	Supporting major field networks	768 points			

* In the model numbers shown above, (1) indicates the field network specification (DV, CC, PR, CN, PRT, EC or EP).

Points to Note/Selection_RCP5 ${ }_{\text {series }}$

| Notes on Installing Rod Actuators

When installing the actuator using the front housing or with a flange (optional), make sure that the actuator will not receive any external forces. (External forces may cause malfunction or damaged parts.) If the actuator will receive external forces or when the actuator is combined with a Cartesian robot, etc., use the mounting holes on the actuator base to secure the actuator.

Even when the actuator does not receive any external forces, provide a support base to support the actuator, as shown in the figure on the right, if the actuator is installed horizontally and secured using a flange or through the bracket mounting holes of the side-mounted motor specification.

I Selection Guideline (Correlation Diagram of Push Force and Current-limiting Value)

In push-motion operation, the push force can be used by changing the current-limiting value of the controller over a range of 20% to 70%. The maximum push-force varies depending on the model, so check the required push force from the graphs on the following pages and select an appropriate type meeting the purpose of use.

When performing push-motion operation using a slider actuator, limit the push current limit so that the reactive moment generated by the push force will not exceed 80% of the rated moment $(\mathrm{Ma}, \mathrm{Mb})$ specified in the catalog. To help with the moment calculations, the application position of the guide moment is shown in the figure below. Calculate the necessary moment by considering the offset of the push force application position. Note that if an excessive force exceeding the rated moment is applied, the guide may be damaged and the life may become shorter. Accordingly, include a sufficient safety factor when deciding on the push force.

Calculation example:

If push-motion operation is performed with an RCP5-SA7C by applying 50 N at the position shown to the right, the moment received by the guide, or
Ma , is calculated as $(46.5+50) \times 50=4825(\mathrm{Nmm})$

$$
=4.825(\mathrm{Nm})
$$

Since the rated Ma moment of the SA7C is $10(\mathrm{Nm}), 10 \times 0.8=8>4.825$, suggesting that this selection is acceptable.
If an Mb moment generates due to push-motion operation, calculate the moment from the overhang and confirm, in the same way, that the calculated moment is within 80% of the rated moment.

- The relationship of push force and current-limiting value is only a reference, and the graphs may vary slightly from the actual values.
- If the current-limiting value is less than 20%, the push force may vary. Make sure the current-limiting value remains 20% or more.
- The graphs assume a traveling speed of $10 \mathrm{~mm} / \mathrm{s}$ for RA8C/RA8R/RA10C/RA10R and $20 \mathrm{~mm} / \mathrm{s}$ for other than those models during push-motion operation.
- Be sure to use the RA8C/RA8R at a current-limiting value of 60% or less, because performing push-motion operation with these actuators at a current-limiting value of 70% may lead to motor damage.
- Use the table below as a rough guide for the upper limit of push cycles when the RCP5-RA10C/RA10R of each lead is operated with the maximum push force over a push-motion travel distance of 1 mm .

Lead (type)	2.5	5	10
Push cycles	1.4 million cycles	25 million cycles	157.6 million cycles

* The upper limit of push cycles varies depending on the impact, vibration and other operating conditions.
The cycles shown to the left assume no impact or vibration.

■ Points to Note on Push-motion Operation Using RCP5-RA10C/RA10R

The push force is limited on certain RA10C/RA10R models due to its relationship with the buckling load of the ball screw. (Refer to the table below.)

Items	Stroke 550 mm or less	Stroke 600 mm or less	Stroke 650 mm or less	Stroke 700 mm or less	Stroke 750 mm or less	Stroke 800 mm or less
Lead 10	As shown in the push force graph					
Lead 5	As shown in the graph	2900 N	2500 N	2200 N	2000 N	1800 N
Lead 2.5	As shown in the graph				5900 N	5400 N

Standard Specification Lead 20

Orientation	Horizontal			Vertical
	Acceleration (G)			
(mm/s)	0.20 .3			
0	6			1.5
160	6			1.5
320	6			1.5
480	4			1
640	3			0.5

Standard Specification Lead 12

Orientation	Horizontal				Acceleration (G)		
Speed $(\mathrm{mm} / \mathrm{s})$	0.2	0.3	0.5	0.7	0.1	0.2	0.3
0	25					4	
100	25					4	
200	25					4	
300	20					3	
400	10					2	
500	5					1	

PowerCon Specification								
Orientation	Horizontal					Vertical		
Speed	Acceleration (G)							
(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5
0	40	40	35	30	25	10	10	10
50	40	40	35	30	25	10	10	10
100	40	40	35	30	25	10	10	10
150	40	40	35	25	25	10	10	10
200	40	40	30	25	20	10	10	10
250	40	40	27.5	22.5	18	10	9	8
300	40	35	25	20	14	6	6	6
350	40	30	14	12	10	5	5	5
400	30	18	10	6	5	4	3	3
450	25	8	3			2	2	1

Standard Specification Lead 6

Orientation	Horizontal				Vertical		
Speed	Acceleration(G)						
$(\mathrm{mm} / \mathrm{s})$	0.2	0.3	0.5	0.7	0.1	0.2	0.3
0	40					10	
50	40					10	
100	40					10	
150	40					8	
200	35					5	
250	10					3	

Standard Specification Lead 3

Orientation	Horizontal				Vertical		
Speed	Acceleration (G)						
(mm / s)	0.2	0.3	0.5	0.7	0.1	0.2	0.3
0	40					20	
25	40					20	
50	40					16	
75	40					12	
100	40					9	
125	40					5	

Standard Specification Lead 16

Standard Specification						Lead 8	
Orientation Speed $(\mathrm{mm} / \mathrm{s})$	Horizontal				Vertical		
	Acceleration (G)						
		0.3	0.5	50.7	70.1		
0	50					17.	7.5
70	50					17.5	7.5
140	50						
210	30						

Standard Specification Lead 4

Orientation Speed $(\mathrm{mm} / \mathrm{s})$		Horizontal			Vertical	
		Acceleration (G)				
	0.2					
	55					26
35	55					26
70	55					15
105	55					4

RCP5-RA8C

Lead 5 | Orientation | Horizontal |
| :---: | :---: |
| Speed | Acceleration (G) |
| $(\mathrm{mm} / \mathrm{s})$ | 0.1 |
| 0 | 100 |
| 90 | 100 |
| 120 | 100 |
| 130 | 90 |
| 140 | 75 |
| 150 | 60 |

 RCP5-RA8R

Lead 5

Lead 20

I Selection References (Guide for Selecting Allowable Load for Radial Cylinder)

The radial cylinder has a built-in guide, so loads up to a certain level can be applied to the rod without using an external guide. Refer to the graphs below for the allowable load mass. If the allowable load will be exceeded under the required operating conditions, add an external guide.
Allowable load mass for RCP5, horizontally mounted

RCP5-RA4/RA6/RA7

RCP5-RA8/RA10

Allowable load mass for RCP5, vertically mounted

System Configuration_RCP5 ${ }_{\text {series }}$

I System Configuration

Single-axis Specification

Option
PC software
(Refer to P. 56)
RS232 connection type
<Model number: RCM-101-MW>
USB connection type
<Model number: RCM-101-USB>

Option
Teaching pendant
(Refer to P. 56)
<Model number: TB-01-C (*)>

Field network
DeviceNet/CC-Link/PROFIBUS-DP/PROFINET-IO/ CompoNet/EtherCAT/EtherNet/IP

PIO flat cable

(Refer to P. 58)
<Model number: CB-MSEP-PIOO20>
Standard length: 2 m
Comes with any PIO specification controller

Controller
(Refer to P. 39)
<Model number: PCON-CA>
Simple Absolute battery <Model number: AB-7>

DC24V Power Supply 24V®
OV © OV ©
\qquad
<Connectable Actuators〉

Integrated motor/encoder cable <Model number: CB-CA-MPA $\square \square \square$ <Model number: CB-CA-MPA $\square \square \square$-RB> Standard lengths: $1 \mathrm{~m} / 3 \mathrm{~m} / 5 \mathrm{~m}$ (Refer to P. 57)
Supplied with the actuator

Integrated motor/encoder cable <Model number: CB-CAN-MPA $\square \square \square$ > <Model number: CB-CAN-MPA $\square \square$-RB> Standard lengths: $1 \mathrm{~m} / 3 \mathrm{~m} / 5 \mathrm{~m}$ (Refer to P. 57)

Integrated motor/encoder cable (for RCP5-RA8C/8R/10C/10R) <Model number: CB-CFA3-MPA $\square \square \square$ <Model number: CB-CFA3-MPA $\square \square \square$-RB> Standard lengths: $1 \mathrm{~m} / 3 \mathrm{~m} / 5 \mathrm{~m}$ (Refer to P. 57)

Built-in high-output driver designed exclusively for RCP5/RCP4 generates greater torque at high speed
The newly developed high-output driver (patent pending) achieves significantly improved specifications compared to conventional models (RCP2 series), with the acceleration/deceleration higher by 1.4 times, maximum speed by 1.5 times, and payload twice as large.

${ }^{*}$) The rates of improvement vary depending on the type.
(*) The RCP3/RCP2 are also supported.

2 Supporting the battery-less absolute encoder is supported. Since no battery is needed to retain position data, less space is needed to install the control panel, which in turn leads to lower cost of your equipment.

3 Common boards ensures greater ease of maintenance

While conventional controllers require a separate set of boards for each actuator, the PCON-CA/CFA use common boards for all actuators, meaning that actuators of different models such as RCP5, RCP4, RCP3 and RCP2 can be operated simply by changing the controller settings. The result is significant reduction in maintenance stock.

Smart tuning function, maintenance information, calendar function
The takt time minimization function sets an optimal acceleration/deceleration rate according to the load that is available (*). You can also record the number of times the actuator has moved and the distance that it has travelled, for use in maintenance.
(*) You need PC software Ver. 8.03.00.00 or later or $_{\text {(}}$ a CON-PTA (teaching pendant) to use the takt time minimization function.

I List of Models

RoboCylinder Position Controller

1/0 type			Positioner type	Pulse-train type	Field network type							
			DeviceNet		CClink	$\frac{\text { PRAOET }}{\text { Bit }}$	CompoNet		Ether $\mathbf{C A T}{ }^{\text {\% }}$	Ethervet/IPD		
			DeviceNet connection specification		CC-Link connection specification	PROFIBUS-DP connection specification	CompoNet connection specification	PROFINET-IO connection specification	EtherCAT connection specification	EtherNet/ IP connection specification		
1/0 type model number				NP/PN	PLN/PLP	DV	CC	PR	CN	PRT	EC	EP
PCON-CA	Battery-less absolute specification or Incremental specification			\bigcirc								
	Simple absolute specification	with absolute battery	\bigcirc	-	\bigcirc							
		with absolute battery unit	\bigcirc	-	\bigcirc							
		No absolute battery	\bigcirc	-	\bigcirc							
PCON-CFA	Battery-less absolute specification or Incremental specification		\bigcirc									

* If the RCP5 is used with pulse-train I/Os, the actuator must complete a home return prior to operation, as with any incremental actuator.

IModel Specification Items

| PIO I/O Interface

\square Input Part External Input Specifications

Item	Specification
Input voltage	DC24V $\pm 10 \%$
Input current	$5 \mathrm{~mA}, 1$ circuit
ON/OFF voltage	ON voltage: 18 VDC min. OFF voltage: 6 VDC max.

Output Part External Output Specifications

Item	Specification
Load voltage	DC24V
Maximum load current	$50 \mathrm{~mA}, 1$ circuit
Leak current	2 mA max. per point

NPN specification

PNP specification

I Types of PIO Patterns (Control Patterns)

This controller supports seven types of control methods. Select in Parameter No. 25, "PIO pattern selection" the PIO pattern that best suits your purpose of use.

Type	Set value of Parameter No. 25	Mode	Overview
PIO pattern 0	(factory setting)	Positioning mode (standard type)	- Number of positioning points: 64 points - Position number command: Binary Coded Decimal (BCD) - Zone signal output (*1): 1 point - Position zone signal output (*2) : 1 point
PIO pattern 1	1	Teaching mode (teaching type)	- Number of positioning points: 64 points - Position number command: : Binary Coded Decimal (BCD) - Position zone signal output **2): 1 point - Jog (inching) operation using PIO signals is supported. Current position data can be written to the position table using PIO signals.
PIO pattern 2	2	256-point mode (256 positioning points)	- Number of positioning points: 256 points - Position number command: Binary Coded Decimal (BCD) - Position zone signal output (*2) : 1 point
PIO pattern 3	3	512-point mode (512 positioning points)	- Number of positioning points: 512 points - Position number command: Binary Coded Decimal (BCD) - No zone signal output
PIO pattern 4	4	Solenoid valve mode 1 (7-point type)	- Number of positioning points: 7 points - Position number command: Individual number signal ON - Zone signal output ($* 1$): 1 point - Position zone signal output (*2) : 1 point
PIO pattern 5	5	Solenoid valve mode 2 (3-point type)	- Number of positioning points: 3 points - Position number command: Individual number signal ON - Completion signal: A signal equivalent to a LS (limit switch) signal can be output. - Zone signal output (*1): 1 point - Position zone signal output (*2): 1 point
PIO pattern 6 (Note 1)	6	Pulse-train control mode	- Differential pulse input (200 kpps max.) - Home return function - Zone signal output (*1) : 2 points - No feedback pulse output

[^4](*) Position zone signal output:This function is available as part of a position number. A desired zone is set in the position table and becomes effective only when the corresponding position is specified, but not with commands specifying other positions.
(Note 1) Pulse Train Control Model is available only if the pulse train control type is indicated (from PCON-CA-PLN and PLP) at the time of purchase.

| PIO Patterns and Signal Assignments

The table below lists the signal assignments for the I/O flat cable under different PIO patterns.
Connect an external device (such as a PLC) according to this table.

Pin number	Category	PIO function	Parameter No. 25, "PIO pattern selection"					
			0	1	2	3	4	5
			Positioning mode	Teaching mode	256-point mode	512-point mode	Solenoid valve mode 1	Solenoid valve mode 2
	Input	Number of positioning points	64 points	64 points	256 points	512 points	7 points	3 points
		Home return signal	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-
		Jog signal	-	\bigcirc	-	-	-	-
		Teaching signal (writing of current position)	-	\bigcirc	-	-	-	-
		Brake release	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	Output	Moving signal	\bigcirc	\bigcirc	-	-	-	-
		Zone signal	\bigcirc	\triangle (Note 1)	\triangle (Note 1)	-	\bigcirc	\bigcirc
		Position zone signal	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc
1A	24 V	P24						
2 A	24 V	P24						
3A	Pulse input	- -						
4A		-						
5A	Input	INO	PC1	PC1	PC1	PC1	STO	STO
6A		IN1	PC2	PC2	PC2	PC2	ST1	ST1(JOG+)
7A		IN2	PC4	PC4	PC4	PC4	ST2	ST2(-)
8A		IN3	PC8	PC8	PC8	PC8	ST3	-
9 A		IN4	PC16	PC16	PC16	PC16	ST4	-
10A		IN5	PC32	PC32	PC32	PC32	ST5	-
11A		IN6	-	MODE	PC64	PC64	ST6	-
12A		IN7	-	JISL	PC128	PC128	-	-
13A		IN8	-	JOG+	PC256	PC256	-	-
14A		IN9	BKRL	JOG-	BKRL	BKRL	BKRL	BKRL
15A		IN10	RMOD	RMOD	RMOD	RMOD	RMOD	RMOD
16A		IN11	HOME	HOME	HOME	HOME	HOME	-
17A		IN12	*STP	*STP	*STP	*STP	*STP	-
18A		IN13	CSTR	CSTR/PWRT	CSTR	CSTR	-	-
19A		IN14	RES	RES	RES	RES	RES	RES
20A		IN15	SON	SON	SON	SON	SON	SON
1B	Output	OUT0	PM1(ALM1)	PM1(ALM1)	PM1 (ALM1)	PM1 (ALM1)	PE0	LSO
2B		OUT1	PM2(ALM2)	PM2(ALM2)	PM2(ALM2)	PM2(ALM2)	PE1	LS1(TRQS)
3B		OUT2	PM4(ALM4)	PM4(ALM4)	PM4(ALM4)	PM4(ALM4)	PE2	LS2 (Note2)
4B		OUT3	PM8(ALM8)	PM8(ALM8)	PM8(ALM8)	PM8(ALM8)	PE3	-
5B		OUT4	PM16	PM16	PM16	PM16	PE4	-
6B		OUT5	PM32	PM32	PM32	PM32	PE5	-
7B		OUT6	MOVE	MOVE	PM64	PM64	PE6	-
8B		OUT7	ZONE1	MODES	PM128	PM128	ZONE1	ZONE1
9B		OUT8	PZONE/ZONE2	PZONE/ZONE1	PZONE/ZONE1	PM256	PZONE/ZONE2	PZONE/ZONE2
10B		OUT9	RMDS	RMDS	RMDS	RMDS	RMDS	RMDS
11B		OUT10	HEND	HEND	HEND	HEND	HEND	HEND
12B		OUT11	PEND	PEND/WEND	PEND	PEND	PEND	-
13B		OUT12	SV	SV	SV	SV	SV	SV
14B		OUT13	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS
15B		OUT14	*ALM	*ALM	*ALM	*ALM	*ALM	*ALM
16B		OUT15	LOAD/TRQS *ALML	*ALML	LOAD/TRQS *ALML	LOAD/TRQS *ALML	LOAD/TRQS *ALML	*ALML
17B	Pulse input	-						
18B		-						
19B	OV	N						
20B	OV	N						

[^5]
Controller $<$ PCON-CA/CFA>_RCP5 ${ }_{\text {series }}$

| Pulse-train Control Circuit

Host Unit = Differential Type

Host Unit = Open Collector Type The AK-04 (optional) is needed to input pulses.

Caution: Use the same power supply for open collector input/output to/from the host and for the AK-04.

- Command Pulse Input Patterns

I I/O Signals in Pulse-train Control Mode

The table below lists the signal assignments for the flat cable in the pulse-train control mode. Connect an external device (such as PLC) according to this table.

$\begin{gathered} \text { Pin } \\ \text { number } \end{gathered}$	Category	1/0 number	Signal abbreviation	Signal name	Function description
1A	24 V	-	P24	Power supply	I/O power supply +24 V
2 A	24 V	,	P24	Power supply	I/O power supply +24 V
3A	Pulse input		PP	Differential pulse-train input (+)	Differential pulses are input from the host. Up to 200 kpps can be input.
4A			/PP	Differential pulse-train input (-)	
5A	Input	NO	SON	Servo ON	The servo is ON while this signal is ON, and OFF while the signal is OFF.
6A		IN1	RES	Reset	Present alarms are reset when this signal is turned ON.
7A		IN2	HOME	Home return	Home return operation is performed when this signal is turned ON.
8A		IN3	TL	Torque limit selection	When this signal is turned ON, the motor torque is limited to the value set by the parameter.
9A		IN4	CSTP	Forced stop	The actuator is forcibly stopped when this signal has remained ON for 16 ms or more. The actuator decelerates to a stop at the torque set in the controller and the servo turns OFF.
10A		IN5	DCLR	Deviation counter clear	This signal clears the deviation counter.
11A		IN6	BKRL	Forced brake release	The brake is forcibly released.
12A		IN7	RMOD	Operation mode switching	The operation mode can be switched when the MODE switch on the controller is set to AUTO. (AUTO when this signal is OFF, and to MANU when the signal is ON.)
13A		IN8	NC	-	Not used
14A		IN9	NC	-	Not used
15A		IN10	NC	-	Not used
16A		IN11	NC	-	Not used
17A		IN12	NC	-	Not used
18A		IN13	NC	-	Not used
19A		IN14	NC	-	Not used
20A		IN15	NC	-	Not used
1B	Output	OUTO	PWR	System ready	This signal turns ON when the controller becomes ready after the main power has been turned on.
2B		OUT1	SV	Servo ON status	This signal turns ON when the servo is ON.
3B		OUT2	INP	Positioning complete	This signal turns ON when the amount of remaining travel pulses in the deviation counter falls within the in-position band.
4B		OUT3	HEND	Home return complete	This signal turns ON upon completion of home return.
5B		OUT4	TLR	Torque limited	This signal turns ON upon reaching the torque limit while the torque is limited.
6B		OUT5	*ALM	Controller alarm status	This signal turns ON when the controller is normal, and turns OFF when an alarm generates.
7B		OUT6	*EMGS	Emergency stop status	This signal turns ON when the emergency stop of the controller is cancelled, and turns OFF when an emergency stop is actuated.
8B		OUT7	RMDS	Operation mode status	The operation mode status is output. This signal turns ON when the controller is in the manual mode.
9B		OUT8	ALM1	Alarm code output signal	An alarm code is output when an alarm generates. For details, refer to the operation manual.
10B		OUT9	ALM2		
11B		OUT10	ALM4		
12B		OUT11	ALM8		
13B		OUT12	*ALML	Minor failure alarm	This signal is output when a message-level alarm generates.
14B		OUT13	NC	-	Not used
15B		OUT14	ZONE1	Zone signal 1	This signal turns ON when the current position of the actuator falls within the parameter-set range.
16B		OUT15	ZONE2	Zone signal 2	
17B	Pulse input	\square	NP	Differential pulse-train input (+)	Differential pulses are input from the host. Up to 200 kpps can be input.
18B			/NP	Differential pulse-train input (-)	
19B	OV	,	N	Power supply	I/O power supply 0 V
20B	OV	\square	N	Power supply	I/O power supply 0 V

(Note) "*" indicates a negative logic signal. Negative logic signals are normally ON while the power is supplied, and turn OFF when the signal is output.
(Note) The number of encoder pulses is 800 with all RCP5 series models. For details, refer to the operation manual.

IField Network Specification: Explanation of Operation Modes

If the PCON-CA is controlled via a field network, you can select one of the following five modes to operate the actuator. Take note that the required data areas on the PLC side vary depending on the mode.

- Mode Description

	Mode	
0	Remote I/O mode	In this mode, the actuator is operated by controlling the ON/OFF of bits via the network, just like with the PIO specification. The number of positioning points and functions vary with each of the operation patterns (PIO patterns) that can be set by the controller's parameter.
1	Position/simple direct numerical mode	The target position is specified by directly entering a value, while other operating conditions (speed, acceleration, etc.) are set by specifying the desired position number corresponding to the desired operating conditions already input to the position data table.
2	Half direct numerical mode	The actuator is operated by specifying the speed, acceleration/deceleration and push current, in addition to the target position, by directly entering values.
3	Full direct numerical mode	The actuator is operated by specifying the target position, speed, acceleration/deceleration, push current control value, etc., by directly entering values. The current position, current speed, command current, etc., can also be read.
4	Remote I/O mode 2	Same as the above remote I/O mode, plus the current position read function and command current read function.

Required Data Size for Each Network

		DeviceNet	CC-Link	PROFIBUS-DP	CompoNet	PROFINET-IO	EtherCAT	EtherNet/IP
0	Remote I/O mode	1 CH	1 station	2 bytes				
1	Position/simple direct numerical mode	4 CH	1 station	8 bytes				
2	Half direct numerical mode	8 CH	2 stations	16 bytes				
3	Full direct numerical mode	16 CH	4 stations	32 bytes				
4	Remote I/0 mode 2	6 CH	1 station	12 bytes				

List of Functions by Operation Mode

	Remote I/O mode	Position/simple direct numerical mode	Half direct numerical mode	Full direct numerical mode	Remote I/O mode 2
Number of positioning points	512 points	768 points	Unlimited	Unlimited	512 points
Operation by direct position data specification	-	\bigcirc	\bigcirc	\bigcirc	-
Direct speed/acceleration specification	-	-	\bigcirc	\bigcirc	-
Push-motion operation	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Current position read	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Current speed read	-	-	\bigcirc	\bigcirc	-
Operation by position number specification	\bigcirc	\bigcirc	-	-	\bigcirc
Completed position number read	\bigcirc	\bigcirc	-	-	\bigcirc

[^6]
I External Dimensions

PCON-CFA

I Specification List

Item				Description	
				PCON-CA	PCON-CFA
Number of controlled axes				1 axis	
Power-supply voltage				DC24V $\pm 10 \%$	
Load current (including control-side current consumption) (Note 1)	$\begin{aligned} & \text { RCP2 } \\ & \text { RCP3 } \end{aligned}$	Motor type	20P, 28P, 28SP	1 A max.	
			42P, 56P	2.2 A max.	
			60P, 86P		6 A max
	$\begin{aligned} & \text { RCP4 } \\ & \text { RCP5 } \end{aligned}$	Motor type	$\begin{aligned} & \text { 28P, 35P, } \\ & 42 P, 56 \mathrm{P} \end{aligned}$	High-output setting disabled: 2.2 A max.	
				High-output setting enabled: 3.5 A rated / 4.2 A max.	
					6 A max
Electromagnetic brake power (for actuator with brake)				DC24V $\pm 10 \% \quad 0.15 \mathrm{~A}(\max)$	DC24V $\pm 10 \%$ 0.5A (max)
Rush current (Note 2)				8.3A	10A
Momentary power failure resistance				MAX. $500 \mu \mathrm{~s}$	
Supported encoder				Battery-less absolute encoder/incremental encoder	
Actuator cable length				20 m max.	
External interface		PIO specification		Dedicated 24-VDC signal inputs/outputs (NPN/PNP selectable) --- Up to 16 input points, up to 16 output points, cable length up to 10 m	
		Field network specification		DeviceNet, CC-Link, PROFIBUS-DP, CompoNet, PROFINET-IO, EtherCAT, EtherNet/IP	
Data setting, input method				PC software, touch panel teaching pendant, teaching pendant	
Data retention memory				Position data and parameters are saved in non-volatile memory. (There are no limits to how many times the memory can be rewritten.)	
Operation mode				Positioner mode/pulse-train control mode (selectable by parameter setting)	
Number of positioner-mode positions				Up to 512 points for positioner type or up to 768 points for network type (Note) The total number of positioning points varies depending on which PIO pattern is selected.	
Pulse-train interface		Input pulses		Differential type (line-driver type): 200 kpps max., cable length up to 10 m	
		Open-collector type: Not supported. * If the host uses open-collector outputs, use the separately sold AK-04 (optional) to change them to differential outputs.			
		Command pulse magnification (Electronic gear: A/B)		$\begin{aligned} & 1 / 50<A / B<50 / 1 \\ & \text { Setting range of } A \text { and } B \text { (set by parameters): } 1 \text { to } 4096 \\ & \hline \end{aligned}$	
		Feedback pulse output		None	
Insulation resistance				Not less than $10 \mathrm{M} \Omega$ at 500 VDC ,	
Electric shock protection mechanism				Class I, basic insulation	
Mass (Note 3)		Incremental specification		Screw fixing type: Not more than 250 g / DIN rail fixing type: Not more than 285 g	Screw fixing type: Not more than $270 \mathrm{~g} / \mathrm{DIN}$ rail fixing type: Not more than 305 g
		Simple absolute specification (including 190 g for battery)		Screw fixing type: Not more than $450 \mathrm{~g} / \mathrm{DIN}$ rail fixing type: Not more than 485 g	
Cooling method				Natural cooling by air	Forced cooling by air
Environment		Ambient operating temperature		0 to $40^{\circ} \mathrm{C}$	
		Ambient operating humidity		Not more than 85\% RH (non-condensing)	
		Operating ambience		Free from corrosive gases	
		Degree of protection		IP20	

[^7]

1 Added PLC function
 MSEP-LC (*)
 *) MSEP-LC coming soon with CE conformity

Operating the actuator and controlling the ON/OFF of I/O (input/output) signals using a ladder logic program is now possible. If your equipment is small enough, the MSEP-LC is all you need to control it. If your equipment is larger in size, you can still use the MSEP-LC to perform distributed control for each process to reduce the load of the main PLC. The MSEP-LC also makes your program simpler and troubleshooting easier.

2

Supporting actuators with the battery-less absolute encoder
MSEP-LC (*) MSEP-C (*) MSEP-LC coming soon with CE contormity.

Features of actuators with the battery-less absolute encoder

1 Home return is no longer necessary, so these actuators start and restart quicker than incremental actuators to begin working right away. They are also free from problems relating to home return, such as position shift.

2 Compared to standard absolute actuators, no battery is required, which results in the following benefits:

- No need to purchase or replace batteries
- No need to control the stocks and replacement timing of batteries
- No need to make adjustment (absolute reset) normally required after battery replacement

RoboCylinder with the battery-less absolute encoder
RCP5

3 Supporting the PowerCon (high-output driver) and Mini Cylinder MSEP-LC (${ }^{*}$)

When the PowerCon (newly developed high-output driver) is installed and combined with the RCP5 or RCP4, high performance is realized as indicated by the maximum speed of 1.5 times higher than that of conventional models and payload of more than twice.
Since the super-compact Mini Cylinders are also supported, you have a greater range of actuator variations - from small to large - to choose from.

4
Supporting field networks
MSEP-LC (*)
MSEP-C
() MSEP-LC coming soon with CE contormity.

DeviceNet, CC-Link, PROFIBUS-DP, CompoNet, EtherCAT, EtherNet/IP, PROFINET-IO and other major field networks are directly accessible.

Features of the network specification

- 256 positioning points per axis
- Numerically specify the target position or speed to move to
- Checking the current position in real time
- Substantially shorter communications time inside the controller (approx. one-tenth of conventional models)

5
 Free ladder logic support software is downloadable from our website

MSEP-LC (*)

(*) MSEP-LC coming soon with CE conformity.
Ladder support software is available for free download from our website. You can create a ladder program before purchasing any product.

Available Soon

[Free] www.robocylinder.de -> download -> software

Choice of 6 boards to install
1 Pulse motor board
NEW 2 Pulse motor board for battery-less absolute specification
NEW 3 PowerCon (pulse high-output motor) board
NEW 4 PowerCon board for battery-less absolute specification
5 AC servo motor board
NEW 6 Mini Cylinder (DC servo motor) board

* Boards 3 and 4 permit operation of only one axis per board.

I Application Examples

Rear panel positioning system

Shifted work parts are aligned by the "push motion" of the RoboCylinder as they enter the machining stage for automotive rear panels. One controller can handle multiple axes, so wiring is easy.

Transferring work parts between machining systems

Work parts can be transferred between systems without using a dedicated PLC.

Palletizing system

Should the system halt due to an emergency stop, etc., it can resume operation right away thanks to the battery-less absolute encoder.

Positioning on an automotive manufacturing line

In the case of a large-scale line, implementing distributed control of each process and connecting to the host controller via a field network reduces the control load of the host controller.

I MSEP Controller Models

50

Controller $<$ MSEP-C/LC>_RCP5 ${ }_{\text {series }}$

I How to Operate the MSEP-C

PIO Specification

Input position data to the MSEP-C and specify a desired position number via PIO from the
host PLC to operate the actuator.

PLC

Position data

1 Teaching pendant (\rightarrow Refer to P. 56 .
2 PC software (\rightarrow Refer to P. 56.)

* You only need either 1 or 2 to complete all necessary settings.

Field Network Specification

As with the PIO specification, input position data to the MSEP and specify a desired position number via a field network from the PLC to operate the actuator.

2 The PLC sends numerical position, speed and other data via a field network to operate the actuator.

Position data

Specification of target position
(Position specification) (Direct numerical specification)

Tools required for setting
1 Teaching pendant (\rightarrow Refer to P. 56.)
2 PC software (\rightarrow Refer to P. 56.)
3 Gateway parameter setting tool

* You only need either 1 or 2 to complete all the necessary settings. 3 comes with the PC software.

I How to Operate the MSEP-LC (*)

PIO Specification

The MSEP-LC runs a ladder logic program internally to operate the axis and control the PIO I/O signals. The axis can be operated either by using position data or specifying coordinates directly.

Tools required for setting
1 Teaching pendant (\rightarrow Refer to P. 56.)
2 PC software (\rightarrow Refer to P. 56.)
3 Gateway parameter setting tool
4 Ladder logic support software (\rightarrow Refer to P. 48.)

* You only need either 11 or 2 to complete all the necessary settings.
3 comes with the PC software.
4 is downloadable from our website. Available Soon

Field Network Specification
The MSEP-LC runs a ladder logic program internally to operate the axis and control I/O signals via a network.
The axis can be operated either by using position data or specifying coordinates directly.

Tools required for setting
1 Teaching pendant (\rightarrow Refer to P. 56.)
2 PC software (\rightarrow Refer to P. 56.)
3 Gateway parameter setting tool
4 Ladder support software (\rightarrow Refer to P. 48.)

* You only need either [1] ${ }^{2}$ to to complete all necessary settings.
[3 comes with the PC software. 4 is downloadable from our website. Avalible Soon

Position data

Ladder logic program

Names of the MSEP Controller Components

Caution: With the high-output setting specification (PowerCon), only one axis can be connected per slot.
Descriptions of the components

1 Motor-encoder connectors for the actuator connection
Connect motor-encoder cable to the actuator
2 Connector for the absolute data backup battery
Connect the absolute data backup battery if the controller has the absolute position encoder specification
Connector for the external brake input
The connector to input a signal to release the brake for the actuator externally.
4 Connector for the emergency stop input for power source shut-off
The emergency stop input connector to connect in/output terminal of the external relay of the motor drive shut-off and each driver slot (*1).
5 Information card for configuration of the connecting axes
The information card contains information regarding the configuration of the controller axes which is removable to examine the contents.
$6 \quad+\mathbf{2 4} \mathrm{V}$ power source input connector
The main power source connector for the controller: Motor drive source shut-down is possible while restoring the power source for the controller unit in case of an emergency shut-down; This is because the terminals for the power source of the motor and the controller are separate.
7 Fan unit
Easily replaceable fan unit. (Replacement fan unit: Model MSEP-FU)
8 AUTO/MANUAL switch
To switch automatic operation to/from manual operation
9 SIO connector
To connect teaching box and the connecting cable for PC software
10 System I/O connector
The connector for remote AUTO/MANU switch input and emergency stop input for the entire controller with functions including an external regeneration-resistance expansion terminal.
11 PIO connector/ field network connection connector (MSEP-C only)
The PIO specification - connects to a 68 -pin ribbon I/0 cable.
The field network specification - connects to a field network type specified on the MSEP controller.
12 Standard I/Os (MSEP-LC only) (*) (") Msep-LC coming soon with CE contormity.
The MSEP-LC comes installed with a 40 -pin PIO connector as standard equipment.
13 Expansion I/Os (MSEP-LC only) (*) (*) MSEP-LC coming soon with CE conformity.
Expansion I/Os can be installed as an option.
Available I/O types include PIO, DeviceNet, CC-Link, PROFIBUS-DP, CompoNet, Ethernet/IP, EtherCAT and PROFINET-IO.
(*1) The shut-off feature is available on a single slot basis which is for two axes per slot. Please note that a single axis basis cannot be accommodated.

I Input/Output (PIO) Signals

The MSEP-C has dedicated inputs and outputs set to PIO signals at 34 input points/34 output points. The axis operates when each signal is turned ON/OFF from the host PLC.
With the MSEP-LC, general-purpose input/output signals at 32 input points/32 output points can be used in a ladder logic program by using the standard 16 input points/16 output points plus expansion I/Os.

MSEP-C (PIO specification)

MSEP-LC (Expansion I/O specification) (*)
(*) MSEP-LC coming soon

PIO Wiring Diagram for MSEP-C

Connector name: HIF6-68PA-1.27DS (Hirose Electric)					
Pin No.	Category	Signal ID	Pin No.	Category	Signal ID
A1	24 V	For l/0	A18		OUTO
A2		INO	A19	Output	OUT1
A3	Input	IN1	A20	(Axis No. 0)	OUT2
A4	(Axis No. 0)	IN2	A21		OUT3
A5		IN3	A22		OUT4
A6		IN4	A23	Output	OUT5
A7	Input	IN5	A24	(Axis No. 1)	OUT6
A8	(Axis No. 1)	IN6	A25		OUT7
A9		IN7	A26		OUT8
A10		IN8	A27	Output	OUT9
A11	Input	IN9	A28	(Axis No. 2)	OUT10
A12	(Axis No. 2)	IN10	A29		OUT11
A13		IN11	A30		OUT12
A14		IN12	A31	Output	OUT13
A15		IN13	A32	(Axis No. 3)	OUT14
A16	(Axis No. 3)	IN14	A33		OUT15
A17		IN15	A34	OV	For I/O

Connector name: HIF6-68PA-1.27DS (Hirose Electric)					
Pin No.	Category	Signal ID	Pin No.	Category	Signal ID
B1	24 V	For l/0	B18		OUT16
B2		IN16	B19	Output	OUT17
B3	Input	IN17	B20	(Axis No. 4)	OUT18
B4	(Axis No. 4)	IN18	B21		OUT19
B5		IN19	B22		OUT20
B6		IN20	B23	Output	OUT21
B7	Input	IN21	B24	(Axis No. 5)	OUT22
B8	(Axis No. 5)	IN22	B25		OUT23
B9		IN23	B26		OUT24
B10		IN24	B27	Output	OUT25
B11	Input	IN25	B28	(Axis No. 6)	OUT26
B12	(Axis No. 6)	IN26	B29		OUT27
B13		IN27	B30		OUT28
B14		IN28	B31	Output	OUT29
B15	Input	IN29	B32	(Axis No. 7)	OUT30
B16	(Axis No. 7)	IN30	B33		OUT31
B17		IN31	B34	OV	For l/O

PIO Wiring Diagram for MSEP-LC (*) (*) MSEP-LC coming soon with CE conformity.

Standard I/Os

Pin No.	Category	Assigned memory	Pin No.	Category	Assigned memory
A1	-	+24-V	A11	Input	X006
A2		external input	A12		X007
A3		Not used	A13		X008
A4		Not used	A14		X009
A5	Input	X000	A15		X00A
A6		X001	A16		X00B
A7		X002	A17		X00C
A8		X003	A18		XOOD
A9		X004	A19		XOOE
A10		X005	A20		X 00 F

Pin No.	Category	Assigned memory	Pin No.	Category	Assigned memory
B1	Output	Y000	B11	Output	YOOA
B2		Y001	B12		YOOB
B3		Y002	B13		YOOC
B4		Y003	B14		YOOD
B5		Y004	B15		YOOE
B6		Y005	B16		YOOF
B7		Y006	B17	-	Not used
B8		Y007	B18		Not used
B9		Y008	B19		
B10		Y009	B20		OVexternar input

Expansion I/Os

Pin No.	Category	Assigned memory	Pin No.	Category	Assigned memory
A1	,	+24-V	A11	Input	X016
A2		external input	A12		X017
A3		Not used	A13		X018
A4		Not used	A14		X019
A5	Input	X010	A15		X01A
A6		X011	A16		X01B
A7		X012	A17		X01C
A8		X013	A18		X01D
A9		X014	A19		X01E
A10		X015	A20		X01F

I Table of General Specifications

Specification item	Description						
Number of axes in the controller	8 axes MAX (MSEP-C), 6 axes MAX (MSEP-LC) (*)			(*) MSEP-LC coming soon with CE conformity.			
Controller/ Motor input power	DC24V $\pm 10 \%$						
Brake power	0.15 A x Number of axes						
Current consumption by control power	0.8A						
Controller inrush current	5 A MAX, under 30 ms						
Motor consumption current					Pulse motor type	Rated ampere	Maximum
	Servo motor type	Rated ampere	Energy saver	Standard/ Hi-accel./decel			
	2W	0.8A		4.6A	20P	1.0A	2.0A
	3W(RCD)	0.7 A		1.5A	28P	1.0A	2.0A
	5W	1.0A	,	6.4 A	35P	$\begin{array}{\|l} \hline \text { 2.2 A (high out- } \\ \text { put disabled) } \\ 3.5 \mathrm{~A} \text { (high } \\ \text { output } \\ \text { specification) } \\ \hline \end{array}$	2.2 A (high output disabled) 4.2 A (high output specification)
	10W(RCL)	1.3A		6.4 A			
	10W(RCA/RCA2)		2.5 A	4.4 A	42P		
	20W	1.3 A	2.5 A	4.4A			
	20 W (20S type)	1.7A	3.4A	5.1A	56P		
	30W	1.3A	2.2A	4.4A			
Motor inrush current	Slot numbers x 10A MAX, under 5ms						
Motor-encoder cable length	Maximum length 20 m (note) for absolute position						
Serial communication (SIO port: dedicated teaching)	RS485 1ch (Modbus protocol compatible) Speed 9.6 to 230.4kbps						
External interface P10 specification	PIO specification : DC24 V dedicated signal in/output; Maximum input of 4 points/axis; Maximum output of 4 points/axis; Maximum cable length 10 m						
External interface	DeviceNet, CC-Link, PROFIBUS-DP, PROFINET-IO, CompoNet, EtherCAT, EtherNet/IP						
Data configuration and input method	PC software application, touch panel teaching pendant, gateway parameter configuration tool						
Data retention memory	Restore the position data and parameter in non-volatile memory (unlimited input)						
Positioning points	PIO specification: 2 or 3 points Field network specification: 256 points (no limited input for the simple numerical control and the direct numerical control) (Note) The number of designated positions vary depending on the parameter configuration with motion mode selection.						
LED display (On the front panel)	LED for driver status, 8 LEDs (for each driver board) Status LED, 4 LEDs (PIO specification), 7 LEDs (Fieldbus specification)						
Electromagnetic brake force release	Enable to force-release by transmitting a deactivation signal to each axis (DC24 V input).						
Surge protection	Overcurrent protection (A cut-off semiconductor circuit is built-in on each slot)						
Electric shock protection	Class I basic insulation						
Insulation resistance	DC500V $10 \mathrm{M} \Omega$						
Weight	620 g with the absolute position encoder specification plus 1950 g absolute data backup battery(8-axis specification)						
Cooling method	Forced- air cooling						
Ambient operating temperature/humidity	0 to $40^{\circ} \mathrm{C}$, under 85% RH (non-condensing)						
International Protection code	IP20						

| Exterior Dimensions

Controller (The same dimensions apply to the MSEP-C/LC.)

Absolute data backup battery box

| Options

Teaching pendant

-Summary Teaching device for positioning input, test operation, and monitoring.

Specification

Rated voltage	24 V DC
Power consumption	3.6 W or less (150 mA or less)
Ambient operating temperature	$0 \sim 50^{\circ}$
Ambient operating humidity	20 to 85% RH (non-condensing)
Environmental resistance	IP40 (initial state)
Weight	507 g ((TB-01 unit only)

PC software (Windows only) * For the MSEP field network specification, the PC software is required.

- Summary A startup support software for inputting positions, performing test runs, and monitoring. With enhancements for adjustment functions, the startup time is shortened.

$\boxed{\square}$ Model \quad RCM-101-MW (External device communication cable + RS232 conversion unit)

External regeneration resistor

- Summary The regeneration resistor converts regenerated current dissipated during deceleration of the motor load into heat. The MSEP controller has an internal regeneration resistor for ordinary operations, however, depending on the operational condition, please install an external regeneration resistor if the internal regeneration resistor capacity is insufficient.

- Model RER-1

Box for the absolute data backup battery

- Summary If the absolute position encoder specification is selected with code ABB, the absolute data backup battery box is included with the controller. However, if the battery box is ordered as a separate unit, it does not include the battery but just the box itself. If the battery is needed, please purchase it separately. (Model: AB-7).
- Model MSEP-ABB (Batteries not included)

|Exterior dimensions See P. 55

* A cable (Model CB-MSEP-AB005) that connects the absolute data backup battery box to the MSEP is included with the box.

Driver board
-Summary A supplement or modification to the driver board is feasible with the MSEP controller. When the actuator that control motions needs to be modified, just replacing the driver board would serve the purpose without changing the entire controller. (The parameters need to be adjusted when changing the driver board)

- Model

Motor type	High output type	Encoder type	Number of axes	Model
Pulse motor	High output setting	Battery-less absolute/ incremental	1-axis	MSEP-PPD1-W
		Simple absolute	1-axis	MSEP-PPD1-A
	Cancellation of high output setting	Battery-less absolute/ incremental	1-axis	MSEP-PD1-W
			2-axis	MSEP-PD2-W
		Simple absolute	1-axis	MSEP-PD1-A
			2-axis	MSEP-PD2-A
AC servo motor	-	Incremental	1-axis	MSEP-AD1-I
			2-axis	MSEP-AD2-I
		Simple absolute	1-axis	MSEP-AD1-A
			2-axis	MSEP-AD2-A
DC servo motor	-	Incremental	1-axis	MSEP-DD1-I
			2-axis	MSEP-DD2-I

Replacement battery

\| Model MSEP-FU

Service parts_RCP5 ${ }_{\text {series }}$

I Service parts

* Please indicate cable length (L) in $\square \square \square$, maximum 20m. e.g.) $080=8 \mathrm{~m}$

Actuator side

Minimum bending radius 5 m or less length $R=68 \mathrm{~mm}$ or more (for moving parts) Longer than $5 \mathrm{~m} \quad \mathrm{R}=73 \mathrm{~mm}$ or more (for moving parts)

* The robot cable is designed for flex-resistance: Please use the robot cable if the cable has to be installed through the cable track.
(Note 1) If the cable is 5 m or longer, $\varnothing 9.1$ cable diameter applies for a non-robot cable and $\varnothing 10$ for a robot cable.

Controller side PADP-24V-1-S (JST)

| Model |
| :---: | :--- | :--- |
| number | CB-APSEP-MPA $\square \square \square$ - LC \quad Integrated Motor-Encoder Cable Integrated Motor-Encoder Robot Cable

for
RCP3/RCA2 and others

Actuator side
Minimum bending radius $\mathrm{R}=68 \mathrm{~mm}$ or more (for moving parts)

Actuator side				Controller side
Pin number		[PCON(ACON)		Pin number
A1		[04 A (U)		1
B1		[VMM] (V)		2
A2		$[\phi / A](W)$		5
B2		$[$ [OB] $]$ (-)		3
A3		[VMM] (-)		4
B3		[$0 / 8]$] (-)		6
A4		[$[5+$] (BK+)		7
B4		[LSS-1(BC)		8
A6		[-j](A)		11
B6	1	[-] (A)		12
A7		$[A+](B+)$		13
B7	Fiv	$[\mathrm{A}-1(\mathrm{~B}-)$	\#	14
A8	,	$\left.{ }^{\text {[}}+\mathrm{l}\right](\mathrm{Z}+)$		15
B8		[$\mathrm{B}-1(2)$		16
A5				9
B5	(110)	${ }_{[B K-]}(\mathrm{LS}-1)$	"	10
A9		[GNDLS (GNDLS)		20
B9	-	[VPSS (VPS)		18
A10		[$\mathrm{VCC]}$] (VCC)		17
810	\sim	[GG0) [GND)		19
$\frac{\text { A11 }}{\text { B11 }}$		Shield (FG) (FG)		21
				22
		NC		23

I Rod Installation Option

RCP5-RA10C/RA10R

Model number
RCP5-FL-RA10

Tip adapter (Flange)
\square Option code FFA Applicable rod types RCP5-RA4C/RA6C/RA7C

\square Option code NFA Applicable rod types RCP5-RA4C/RA6C/RA7C

Tip adapter (Keyway)
Option code KFA Applicable rod types RCP5-RA4C/RA6C/RA7C

IAI Industrieroboter GmbH
Ober der Röth 4
D-65824 Schwalbach / Frankfurt
Germany
Tel.:+49-6196-8895-0
Fax:+49-6196-8895-24
E-Mail: info@IAI-GmbH.de
Internet: http://www.eu.IAI-GmbH.de

IAI America, Inc.

2690 W. 237th Street, Torrance, CA 90505, U.S.A
Phone: +1-310-891-6015, Fax: +1-310-891-0815
IAI (Shanghai) Co., Ltd
Shanghai J iahua Business Centee A8-303.808,
Hongqiao Rd., Shanghai 200030, China
Phone: +86-21-6448-4753, Fax: +86-21-6448-3992

IAI CORPORATION

645-1 Shimizu Hirose, Shizuoka 424-0102, J apan Phone: +81-543-64-5105, F ax: +81-543-64-5182
IAI Robot (Thailand) Co., Ltd
825 PhairojKija Tower 12th Floor, Bangna-Trad RD., Bangna, Bangna, Bangkok 10260, Thailand Phone: +66-2-361-4457, Fax: +66-2-361-4456

[^0]: * The "CT Effects" refer to increased production output per unit time with "shorter cycle time" and "reduced choco-tei" achieved by re-examining the devices that are part of automation equipment.

[^1]: ＊In the model numbers shown above，（1）indicates the field network specification（DV，CC，PR，CN，PRT，EC or EP），

[^2]: * In the model numbers shown above, (1) indicates the field network specification (DV, CC, PR, CN, PRT, EC or EP)

[^3]: (Note) MSEP-C/LC is available for high output only if "High-Output Specification" (PowerCon) is selected in the options.

[^4]: (*1) Zone signal output: A desired zone is set by Parameter Nos. 1 and 2 or 23 and 24 , and the set zone always remains effective once home return has completed.

[^5]: (Note) In the table above, asterisk symbol "*" accompanying each code indicates a negative logic signal. PM1 to PM8 are alarm binary code output signals that are used when an alarm generates.
 (Note 1) In all PIO patterns other than 3, this signal can be switched with PZONE by setting Parameter No. 149 accordingly
 (Note 2) The setting will not become effective until the home return is completed

 ## Reference) Negative logic signal

 Signals denoted by "*" are negative logic signals. Negative logic input signals are processed when turned OFF. Negative logic output signals normally remain ON while the power is supplied, and turn OFF when the signal is output. Note: The names of the signals above inside "()" are functions before the unit returns home.

[^6]: * "○" indicates that the operation is supported, and "-" indicates that it is not supported.

[^7]: Note 1) 0.3 A higher for the field network specification.
 Note 2) Rush current flows for approx. 5 msec after the power is input (at $40^{\circ} \mathrm{C}$). Exercise caution that the rush current value varies depending on the impedance of the power line.
 Note 3) 30 g heavier for the field network specification.

