

GB

www.robocylinder.de

PowerCon Realizing

1.5 Times the Speed and Double the Payload

The PowerCon 150 series boosts the performance of RoboCylinder The side-mounted motor specification and cleanroom specification

- Improved dynamic performance (the speed is up to 1.5 times and payload is up to twice *Specific values vary depending on the model.
- ▶ New functions designed to enhance maintainability enable preventative maintenance,
- ▶ The takt time minimization function lets you set optimal operating conditions with greater

Find the RCP4-RA3 series at the back of this catalogue

RCP4 Series Variations

Model type	Series	Shape	Туре	External view	Actuator size (width)	Stroke	Ball screw lead (mm)	Maximum Speed (mm/s)	Maximum p Horizontal	ayload (kg) Vertical	Page
Straight											
motor	RCP4						84	245	45	25	
							20	800	6	1.5	
			RA5C	2	52mm	50~400	12	700	25	4	(P.21)
		Rod	in sc	10	521111	20 100	6 3	450 225	40 60	10 20	
		type					24	800	20	3	
		-7,00	DAGC	7	<u>(1</u>	50~500	16	700	50	8	(P.23)
			RA6C	1	61mm	50~500	8	420	60	18	(P.25)
				14			4	210	80	28	

*The maximum horizontal payload for the rod type is for when an external guide is used in combination.

Controller		
Series	Туре	Page
PCON	CA	p.40

150% the Output,

Achievable with Standard Controllers

standard motorized cylinders to amazing new heights. (ISO class 4) have been added to the power controller RCP4 series.

IAI's conventional models*) significantly boosts the productivity of your system.

so less time is needed for maintenance. ease.

Find the RCP4-RA3 series at the back of this catalogue

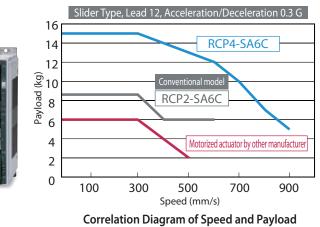
RCP4-RA6C

Model type	Series	Shape	Туре	External view	Actuator size (width)	Stroke	Ball screw lead (mm)	Maximum Speed (mm/s)	Maximum p Horizontal	ayload (kg) Vertical	Page
NEW Side- mounted motor	RCP4									1	
specification		NEW	RA5R	A	52mm	50~400	20 12 6 3	800 700 450 225	6 25 40 60	1.5 4 10 20	P.25
		Rod type	RA6R		61mm	50~500	24 16 8 4	800 560 420 175	20 50 60 80	20 3 8 18 28	P.27

Features

Shorter Takt Time Significantly Boosts

New Functions of **RCP4** Actuator

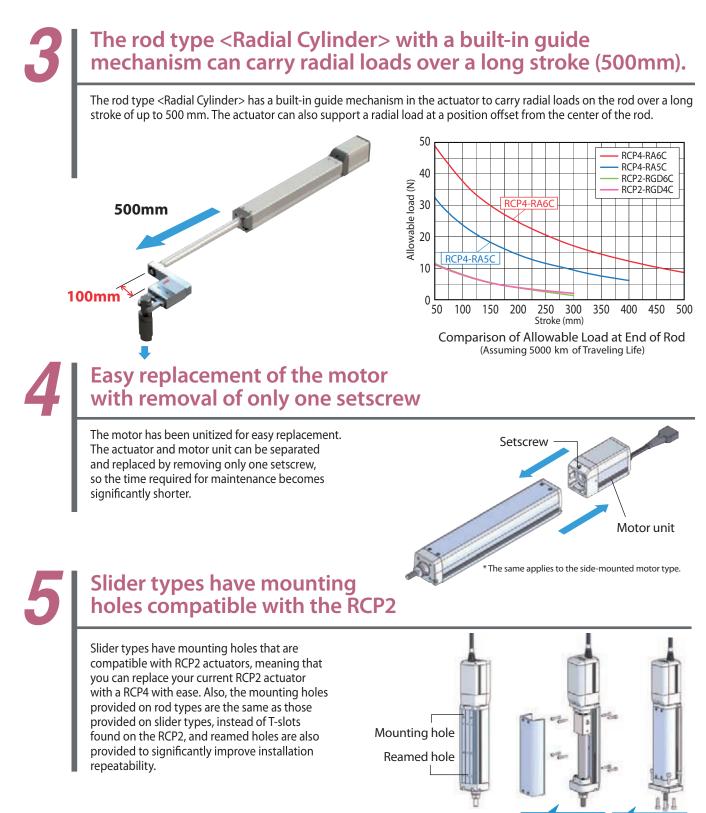

1.5 times higher maximum speed and double the payload when combined with a PowerCon 150

When the new controller (PowerCon 150) equipped with our newly developed high-output driver (patent pending) is used, the maximum speed increases significantly by up to 1.5 times the levels achievable with IAI's conventional models,

while the payload is greater by up to twice (*). In addition to these amazing improvements in specifications, the maximum speed does not drop as much even when the payload increases due to increased torque with the high speed motor, meaning that dynamic performance equivalent to that of a higher-class model can be achieved at lower cost.

(*) The specific rates of improvement vary depending on the model.

PowerCon 150 PCON-CA


Extended lineup with the latest additions: the side-mounted motor specification and the cleanroom specification

Three slider types (SA5/SA6/SA7) and two rod types (RA5/RA6) are now available in the side-mounted motor specification characterized by a significantly shorter overall length for space-saving design. Three slider types are also available in the cleanroom specification conforming to ISO cleanliness class 4.

3

the Productivity of Your System

Bottom of rod type

Features

New Functions to Enhance Maintainability

New Functions of PowerCon 150 PCON-CA

Keep track of the production volume and utilization ratio with the total movement counter function

The total number of times the actuator has moved is counted and recorded in the controller, and a signal is output to an external device once the pre-defined count is exceeded. This function can be used to keep track of the production volume, utilization ratio, etc.

	15 Maintenance information(Ans No.0)	-		
	Total moving count	123	< < <	Jent
	Total moving count threshold			
	Total maying distatos[m]	454	***	Jess
	Total moving distance threshold(m)			
7				

7

Know when to perform maintenance with the total travel counter function

The total distance travelled by the actuator is counted and recorded in the controller, and a signal is output to an external device once the pre-defined count is exceeded. By using this function, you know when to add grease or perform periodic maintenance.

8

Retain alarm generation times with the calendar function

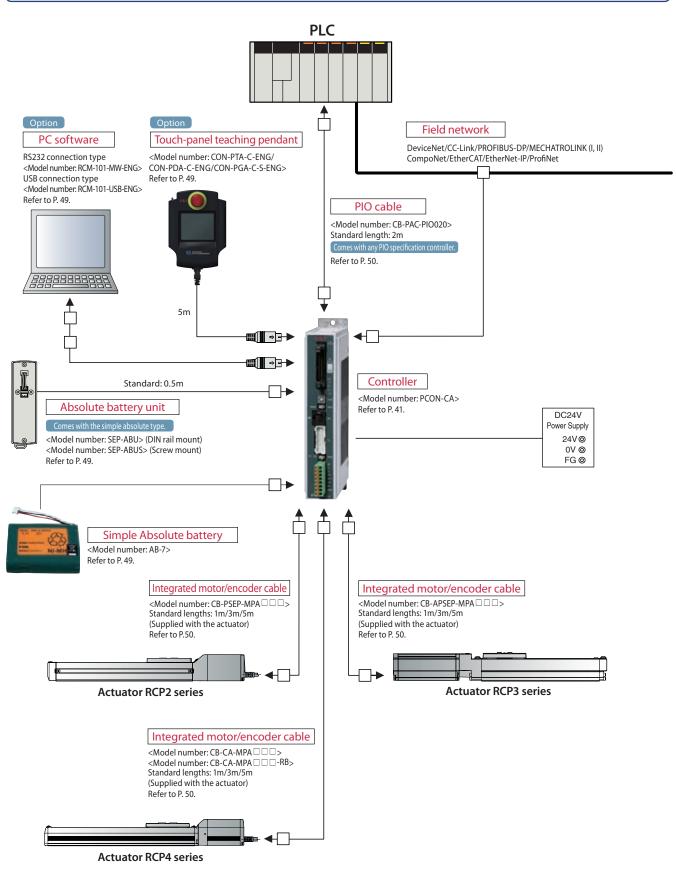
The calendar function (clock function) lets you add timestamps to the history of alarms, etc. This information is useful in troubleshooting, etc.

C. Minut	(X)			
Bela 1000	The second secon	Bardept		all the state house
saturned has	PTT Aurentity the Based			 BATISTICS STATUS
AMERICAN A	528 Sollars) prent railupe reductions			+ II/I/I/II Midelet
better 4	FFF doesdid for Exam-			- Ilafilizati desileren
National A	102 Datters press bellage pedicture		(autor) and	- BACKARD BRANCH
Laters a	DTT AssessIN To Salar		10000 BA	- 11/11/10 00:00+0
Laters J	102 Control paver voltage reduction		internal local	- BL/BL/M SINT-M
LPHRY 4	103 Control press support states		10000, 000	- 11/11/97 10/09/191
Lating 9	BEF PROVED IN XIVES			- 21/11/12 20109140
Loting B				
LANGLE N				
Levery 18				
Lettery LL				
Lettery LL				
Levery 18				
Latery Lt				
Latery 18				

9

The smart tuning function lets you set up the operation conditions of your equipment optimally with ease

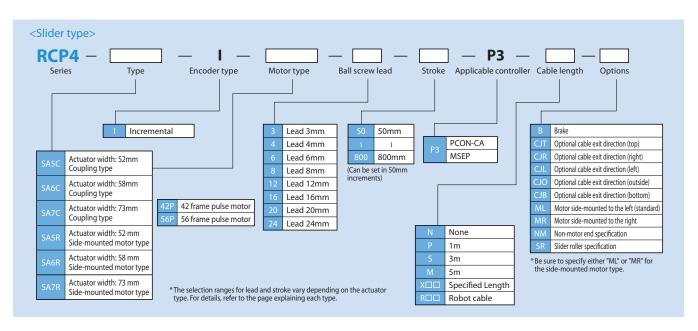
The smart tuning function is a new feature introduced to the RoboCylinder PC software (version 8.03.00.00 or later) and touch panel teaching pendant (model number: CON-PTA). When the actuator is connected to a controller supporting the smart tuning function, all the user needs is to enter the actuator type, transfer load, etc., and the optimal acceleration/ deceleration and speed will be set automatically according to the load.

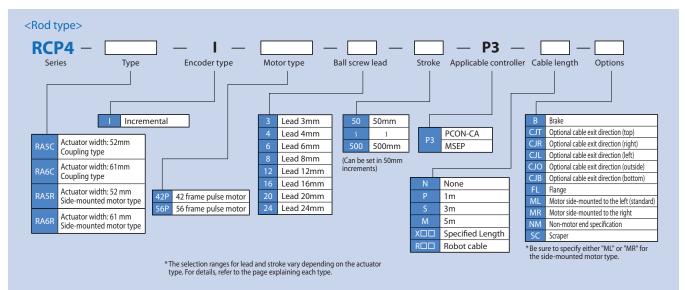

- 1. Setting the acceleration/deceleration from the speed Enter a desired speed in the position data table, and the maximum settable acceleration/deceleration will be set automatically according to the pre-defined load-speed combinations.
- Setting the acceleration/deceleration and speed from the travel Specify the position data number associated with desired start/end positions of movement and set a desired travel distance, and the

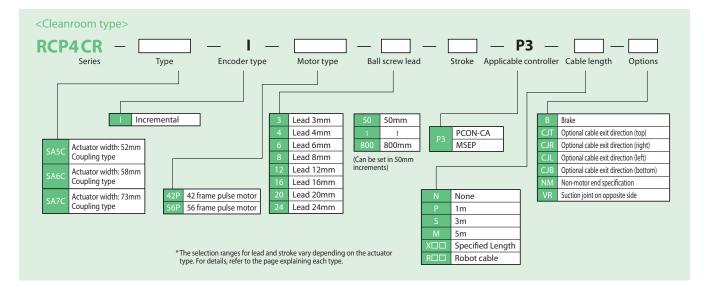
positions of movement and set a desired travel distance, and the combination of acceleration/deceleration and speed that gives the shortest travel time will be set automatically.

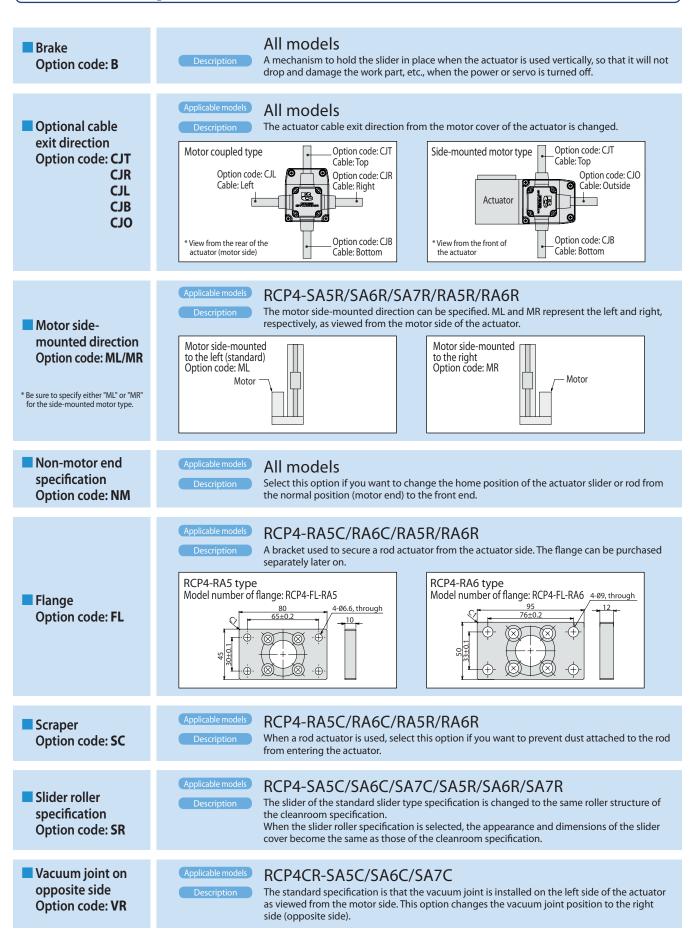
Three controller operation types to choose from

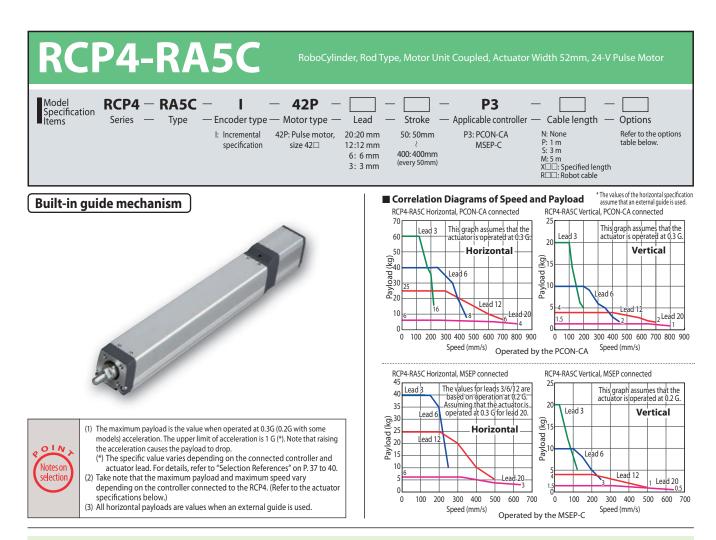
1.**Positioner type** that operates the actuator via ON/OFF of PIOs 2.**Pulse-train type** that operates the actuator by sending pulses from the positioning unit 3.**Field network type** that operates the actuator by sending position data via the network


System Configuration




6


Model Specification Items



Actuator Options

Actuator Specifications

	Leaus allu Payloaus						
	Model number	Lead (mm)	Connected controller	Maximum Horizontal (kg)	payload Vertical (kg)	Max. push force (N)	Stroke (mm)
Ī	RCP4-RA5C-I-42P-20-①-P3-②-③	20	PCON-CA	6	1.5	56	
	RCP4-RA3C-1-42P-20-10-P3-12-13	20	MSEP-C	6	1.5 (*)	50	
ſ	RCP4-RA5C-I-42P-12-①-P3-②-③	12	PCON-CA	25	4	93	
	NCF4-NASC-I-42F-12-00-F5-@-6	12	MSEP-C	25 (*)	4 (*)	95	50~400
	RCP4-RA5C-I-42P-6-①-P3-②-③	6	PCON-CA	40	10	185	(every 50mm)
	KCF4-KA3C-I-42F-0-[]-F3-@-[]	0	MSEP-C	40 (*)	10 (*)	165	,
	RCP4-RA5C-I-42P-3-①-P3-②-③	3	PCON-CA	60	20	370	
L	NCF4-NA3C-I-42F-3-10-F-3-12-13	5	MSEP-C	40 (*)	20 (*)	370	

Code explanation ① Stroke ② Cable length ③ Options (*) When operated at 0.2 G

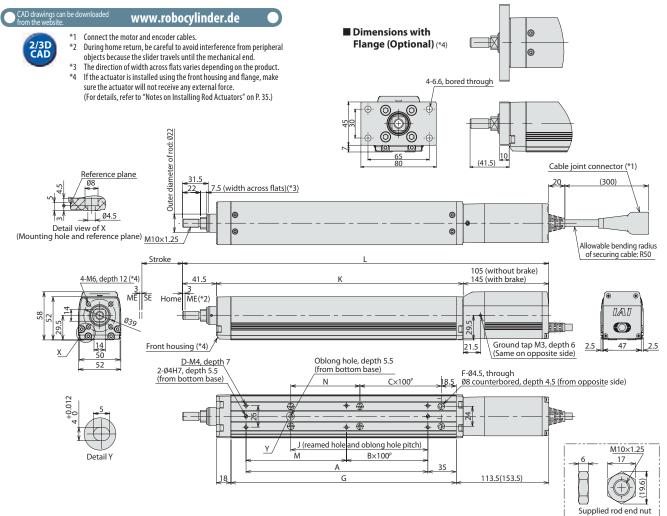
Cable Length	
Туре	Cable symbol
	P (1m)
Standard type	S (3m)
	M (5m)
	X06 (6m) ~X10 (10m)
Special length	X11 (11m) ~X15 (15m)
	X16 (16m) ~X20 (20m)
	R01 (1m) ~R03 (3m)
	R04 (4m) ~R05 (5m)
Robot cable	R06 (6m) ~R10 (10m)
	R11 (11m) ~R15 (15m)
	R16 (16m) ~R20 (20m)

Options			
Name	Option code	See page	
Brake	B	P8	
Optional cable exit direction (top)	CJT	P8	
Optional cable exit direction (right)	CJR	P8	
Optional cable exit direction (left)	CJL	P8	
Optional cable exit direction (bottom)	CJB	P8	
Flange bracket	FL	P8	
Non-motor end specification	NM	P8	
Scraper	SC	P8	

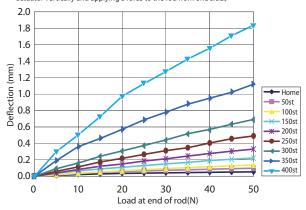
Stroke and Maximum Speed

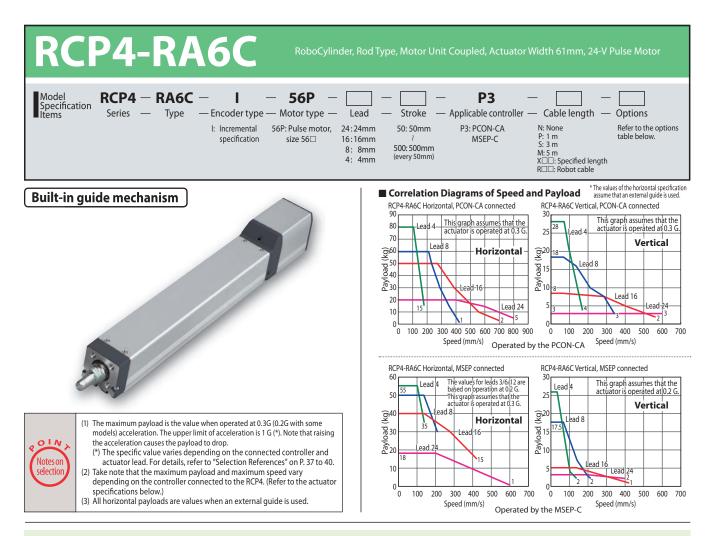
Lead (mm)	Connected controller	50~400 (every 50mm)
20	PCON-CA	800
20	MSEP-C	640
10	PCON-CA	700
12	MSEP-C	500
6	PCON-CA	450
0	MSEP-C	250
3	PCON-CA	225
2	MSEP-C	125
		(unit: mm/s

Actuator Specifications	
ltem	Description
Drive system	Ball screw Ø10 mm, rolled C10
Positioning repeatability (*1)	±0.02mm [±0.03mm]
Lost motion	0.1mm or less
Rod	Ø22mm stainless steel pipe
Rod non-rotation precision	±0.1 deg
Allowable rod load mass	Refer to P. 22 and P. 36
Rod tip overhang distance	100mm or less
Ambient operating temperature, humidity	0 to 40°C, 85% RH or less (Non-condensing)


(*1) The value at lead 20 is shown in [].

Offset distance at end of rod (100mm or less)




Rod Deflection of RCP4-RA5C (Reference Values) (The graph below plots deflection as measured by installing the actuator vertically and applying a force to the rod from one side.)

Dimensions and Mass by Stroke

	Str	oke	50	100	150	200	250	300	350	400
L	Wi	thout brake	300	350	400	450	500	550	600	650
	Wi	th brake	340	390	440	490	540	590	640	690
		A	73.5	123.5	173.5	223.5	273.5	323.5	373.5	423.5
		В	0	0	1	1	2	2	3	3
		C	0	0	0	1	1	2	2	3
		D	4	4	6	6	8	8	10	10
		F	4	4	4	6	6	8	8	10
		G	127	177	227	277	327	377	427	477
		J	18.5	68.5	118.5	168.5	218.5	268.5	318.5	368.5
		K	153.5	203.5	253.5	303.5	353.5	403.5	453.5	503.5
		M	73.5	123.5	73.5	123.5	73.5	123.5	73.5	123.5
		N	35	85	135	85	135	85	135	85
Allował	ole static lo	ad at end of rod (N)	65.6	51.2	41.7	34.9	29.8	25.7	22.4	19.7
Allowable		Load offset 0mm	32.4	23.6	18.1	14.4	11.6	9.5	7.7	6.2
load at en	d of rod (N)	Load offset 100mm	25.6	19.7	15.7	12.7	10.4	8.6	7.1	5.7
Allowable	static torqu	e at end of rod (N•m)	6.6	5.2	4.3	3.7	3.2	2.8	2.6	2.3
Allowable	dynamic to	rque at end of rod (N•m)	2.6	2.0	1.6	1.3	1.0	0.9	0.7	0.6
Mass	V	/ithout brake	1.9	2.1	2.4	2.7	2.9	3.2	3.4	3.7
(kg)		With brake	2.1	2.4	2.6	2.9	3.1	3.4	3.7	3.9

Applicable Contr	oller							
RCP4 series actuator	s can be ope	rated with the controller i	ndicated below. Select the type according to your	intended applicati	on.			
Name	External view	Model number	Features	Maximum number of positioning points	Input power	Power supply capacity		Reference page
Positioner type		PCON-CA-42PI-NP-□-0-□ PCON-CA-42PI-PN-□-0-□	Equipped with a high-output driver Positioner type based on PIO control	512 points				
Pulse-train type		PCON-CA-42PI-PLN-□-0-□ Equipped with a high-output driver PCON-CA-42PI-PLP-□-0-□ Pulse-train input type		—		Refer to P. 48	Refer to P. 41	
Field network type		PCON-CA-42PI-△-0-0-□	Equipped with a high-output driver Supporting 7 major field networks	768 points	DC24V			
Positioner multi-axis specification PIO type	1111	MSEP-C-□-~-NP-□-0-□ MSEP-C-□-~-PN-□-0-□	Positioner type based on PIO control, allowing up to 8 axes to be connected (high-output driver not supported)	3 points		Refer to the		Refer to
Positioner multi-axis specification Network type	liii .	MSEP-C-□-~-△-0-0-□	Field network-ready positioner type, allowing up to 8 axes to be connected (high-output driver not supported)	256 points		MSEP catalog.		the MSEP catalog.

Actuator Specifications Leads and Pavloads

Model number		Connected	Maximum		Max. push	Stroke
modermaniser	(mm)	controller	Horizontal (kg)	Vertical (kg)	force (N)	(mm)
RCP4-RA6C-I-56P-24-①-P3-②-③	24	PCON-CA	20	3	182	
RCF4-RAOC-I-30F-24-[]-F3-[2]-[3]	MSEP-C	MSEP-C	18	3 (*)	102	
RCP4-RA6C-I-56P-16-①-P3-②-③		PCON-CA	50	8	273	
RCP4-RAOC-I-50P-10-10-P5-12-13	16	MSEP-C	40 (*)	5 (*)	2/5	50~500
RCP4-RA6C-I-56P-8-①-P3-②-③		PCON-CA	60	18	547	(every 50mm)
		MSEP-C	50 (*)	17.5 (*)	547	,
RCP4-RA6C-I-56P-4-①-P3-②-③		PCON-CA	80	28	1094	
		MSEP-C	55 (*)	26 (*)	1094	

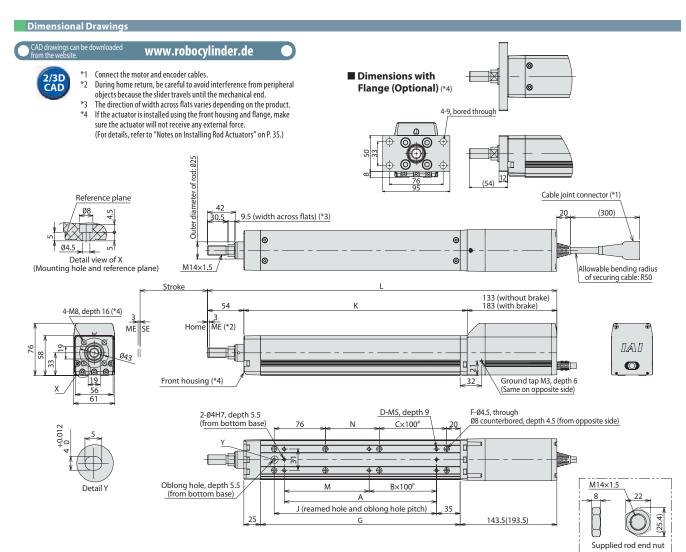
Code explanation ① Stroke ② Cable length ③ Options (*) When operated at 0.2 G

Cable Length	
Туре	Cable symbol
	P (1m)
Standard type	S (3m)
	M (5m)
	X06 (6m) ~X10 (10m)
Special length	X11 (11m) ~X15 (15m)
	X16 (16m) ~X20 (20m)
	R01 (1m) ~R03 (3m)
Robot cable	R04 (4m) ~R05 (5m)
	R06 (6m) ~R10 (10m)
	R11 (11m) ~R15 (15m)
	R16 (16m) ~R20 (20m)

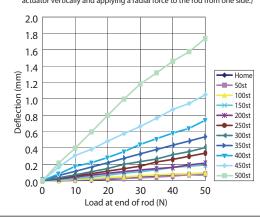
Options			
Name	Option code	See page	
Brake	B	P8	
Optional cable exit direction (top)	CJT	P8	
Optional cable exit direction (right)	CJR	P8	
Optional cable exit direction (left)	CJL	P8	
Optional cable exit direction (bottom)	CJB	P8	
Flange bracket	FL	P8	
Non-motor end specification	NM	P8	
Scraper	SC	P8	

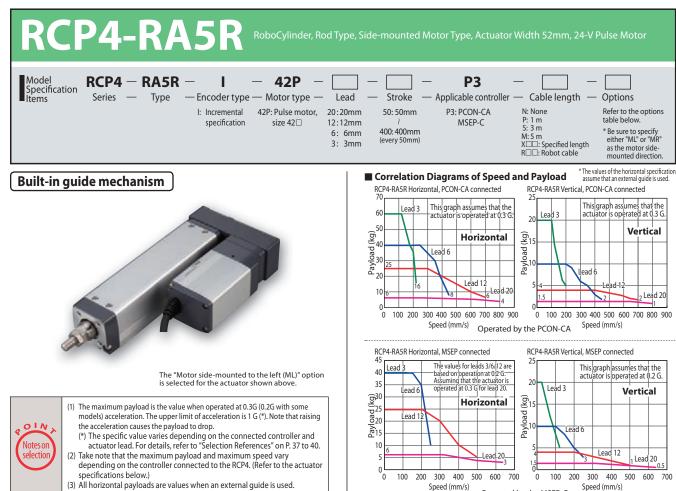
Stroke and Maximum Speed

Stroke and maximum speed					
Lead (mm)	Connected controller	50~500 (every 50mm)			
24	PCON-CA	800<600>			
24	MSEP-C	600<400>			
16	PCON-CA	700<560>			
	MSEP-C	420			
8	PCON-CA	420			
8	MSEP-C	210			
4	PCON-CA	210			
4	MSEP-C	140			
he values in < > app	oly when the actuator is used verti	cally. (unit: mm/			


Actuator Specifications	
Item	Description
Drive system	Ball screw Ø12 mm, rolled C10
Positioning repeatability (*1)	±0.02mm [±0.03mm]
Lost motion	0.1mm or less
Rod	Ø25mm stainless steel pipe
Rod non-rotation precision	±0.1 deg
Allowable rod load mass	Refer to P. 24 and P. 36
Rod tip overhang distance	100mm or less
Ambient operating temperature, humidity	0 to 40°C, 85% RH or less (Non-condensing)

(*1) The value at lead 24 is shown in [].


Offset distance at end of rod (100mm or less)


Rod Deflection of RCP4-RA6C (Reference Values) (The graph below plots deflection as measured by installing the actuator vertically and applying a radial force to the rod from one side.)

Dimensions and Mass by Stroke

	Stroke	50	100	150	200	250	300	350	400	450	500
	Without brake	368.5	418.5	468.5	518.5	568.5	618.5	668.5	718.5	768.5	818.5
L	With brake	418.5	468.5	518.5	568.5	618.5	668.5	718.5	768.5	818.5	868.5
	A	76	126	176	226	276	326	376	426	476	526
	В	0	0	1	1	2	2	3	3	4	4
	С	0	0	0	1	1	2	2	3	3	4
	D	4	4	6	6	8	8	10	10	12	12
	F	6	6	6	8	8	10	10	12	12	14
	G	146	196	246	296	346	396	446	496	546	596
	J	91	141	191	241	291	341	391	441	491	541
	K	181.5	231.5	281.5	331.5	381.5	431.5	481.5	531.5	581.5	631.5
	M	76	126	76	126	76	126	76	126	76	126
	N	30	80	130	80	130	80	130	80	130	80
Allowak	ble static load at end of rod (N)	112.7	91.5	76.7	65.7	57.2	50.4	44.8	40.2	36.2	32.7
Allowable		49.0	37.4	29.9	24.5	20.4	17.1	14.5	12.3	10.3	8.6
load at end	of rod (N) Load offset 100mm	38.7	31.0	25.5	21.4	18.1	15.4	13.2	11.2	9.5	8.0
Allowable static torque at end of rod (N•m)		11.4	9.3	7.9	6.8	6.0	5.4	4.9	4.5	4.1	3.8
Allowable dynamic torque at end of rod (N•m)		3.9	3.1	2.5	2.1	1.8	1.5	1.3	1.1	1.0	0.8
Mass	Without brake	3.4	3.7	4.1	4.4	4.7	5.0	5.4	5.7	6.0	6.3
(kg)	With brake	3.9	4.2	4.6	4.9	5.2	5.5	5.9	6.2	6.5	6.8

RCP4 series actuators can be operated with the controller indicated below. Select the type according to your intended application.							
Name	External view	Model number	Features	Maximum number of positioning points	Input power	Power supply capacity	Reference page
Positioner type		PCON-CA-56PI-NP-□-0-□ PCON-CA-56PI-PN-□-0-□	Equipped with a high-output driver Positioner type based on PIO control	512 points			
Pulse-train type		PCON-CA-56PI-PLN-□-0-□ PCON-CA-56PI-PLP-□-0-□	Equipped with a high-output driver Pulse-train input type	_		Refer to P. 48	Refer to P. 41
Field network type	<u>i</u>	PCON-CA-56PI-△-0-0-□	Equipped with a high-output driver Supporting 7 major field networks	768 points	DC24V		
Positioner multi-axis specification PIO type		MSEP-C-□-~-NP-□-0-□ MSEP-C-□-~-PN-□-0-□	Positioner type based on PIO control, allowing up to 8 axes to be connected (high-output driver not supported)	3 points		Refer to the MSEP	Refer to the MSEP
Positioner multi-axis specification Network type	I IIII -	MSEP-C-□-~-△-0-0-□	Field network-ready positioner type, allowing up to 8 axes to be connected (high-output driver not supported)	256 points		catalog.	catalog.

Operated by the MSEP-C

Actuator Specifications

	Model number		Connected	Maximum	payload	Max. push	Stroke
	Model Humbel	(mm)	controller	Horizontal (kg)	Vertical (kg)	force (N)	(mm)
	RCP4-RA5R-I-42P-20-①-P3-②-③		PCON-CA	6	1.5	56	
	ICF4-IA5I(-1-42F-20-10-F-5-12-13)	20	MSEP-C	6	1.5 (*)	50	50~400
	RCP4-RA5R-I-42P-12-①-P3-②-③	12	PCON-CA	25	4	93	
	NCF4-NA3N-1-42F-12-10-F3-20-3	12	MSEP-C	25 (*)	4 (*)		
	RCP4-RA5R-I-42P-6-①-P3-②-③		PCON-CA	40	10	185	(every 50mm)
	KCF4-KA3K-I-42F-0-[[]-F3-[2]-[3]	6	MSEP-C	40 (*)	10 (*)	165	
	RCP4-RA5R-I-42P-3-①-P3-②-③		PCON-CA	60	20	370	
			MSEP-C	40 (*)	20 (*)	570	

Code explanation ① Stroke ② Cable length ③ Options (*) When operated at 0.2 G

Cable Length	
Туре	Cable symbol
Standard type	P (1m)
	S (3m)
	M (5m)
	X06 (6m) ~X10 (10m)
Special length	X11 (11m) ~X15 (15m)
	X16 (16m) ~X20 (20m)
	R01 (1m) ~R03 (3m)
	R04 (4m) ~R05 (5m)
Robot cable	R06 (6m) ~R10 (10m)
	R11 (11m) ~R15 (15m)
	R16 (16m) ~R20 (20m)

Options					
Name	Option code	See page			
Brake	В	P8			
Optional cable exit direction (top)	CJT	P8			
Optional cable exit direction (outside)	OLD	P8			
Optional cable exit direction (bottom)	CJB	P8			
Flange bracket	FL	P8			
Motor side-mounted to the left (standard)	ML	P8			
Motor side-mounted to the right	MR	P8			
Non-motor end specification	NM	P8			
Scraper	SC	P8			

Stroke and Maximum Speed

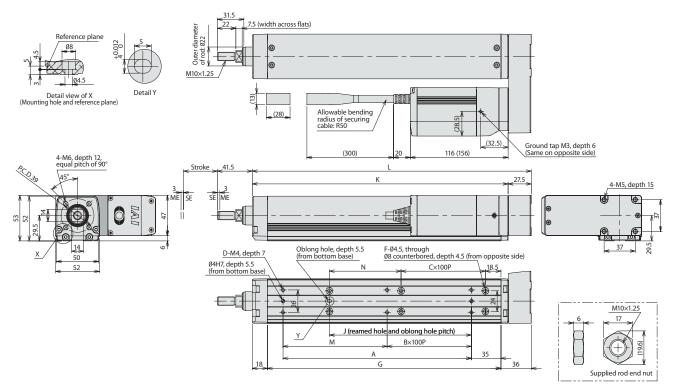
Lead (mm)	Connected controller	50~400 (every 50mm)		
20	PCON-CA	800		
	MSEP-C	640		
10	PCON-CA	700		
12	MSEP-C	500		
6	PCON-CA	450		
0	MSEP-C	250		
3	PCON-CA	225		
3	MSEP-C	125		

(unit: mm/s)

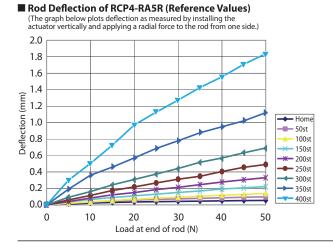
Actuator Specifications	
ltem	Description
Drive system	Ball screw Ø10 mm, rolled C10
Positioning repeatability (*1)	±0.02mm [±0.03mm]
Lost motion	0.1mm or less
Rod	Ø22mm stainless steel pipe
Rod non-rotation precision	±0.1 deg
Allowable rod load mass	Refer to P. 26 and P. 36
Rod tip overhang distance	100mm or less
Ambient operating temperature, humidity	0 to 40°C, 85% RH or less (Non-condensing)

(*1) The value at lead 20 is shown in [].

Offset distance at end of rod (100mm or less)

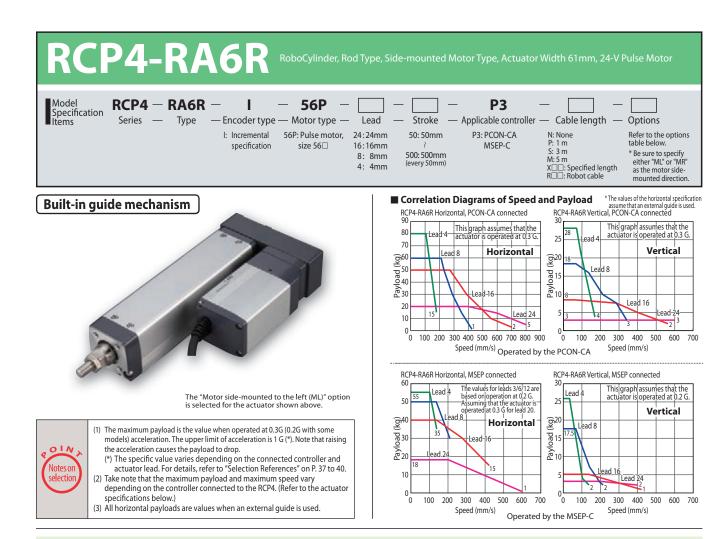


2/3D CAD


CAD drawings can be downloaded from the website www.robocylinder.de

Connect the motor and encoder cables.

- *1 During home return, be careful to avoid interference from peripheral objects because the slider travels until the mechanical end. *2
- *3 The direction of width across flats varies depending on the product.
 *4 If the actuator is installed using the front housing and flange, make sure the actuator will not receive any external force.
 (For details, refer to "Notes on Installing Rod Actuators" on P. 35.)


* The dimensions in () apply when a brake is equipped.

Dimensions and Mass by Stroke

Str	Stroke		100	150	200	250	300	350	400
	Ĺ		231	281	331	381	431	481	531
	A	73.5	123.5	173.5	223.5	273.5	323.5	373.5	423.5
	В	0	0	1	1	2	2	3	3
	C	0	0	0	1	1	2	2	3
	D	4	4	6	6	8	8	10	10
	F	4	4	4	6	6	8	8	10
	G	127	177	227	277	327	377	427	477
	J		68.5	118.5	168.5	218.5	268.5	318.5	368.5
	K	153.5	203.5	253.5	303.5	353.5	403.5	453.5	503.5
	Μ	73.5	123.5	73.5	123.5	73.5	123.5	73.5	123.5
	N	35	85	135	85	135	85	135	85
Allowable static lo	ad at end of rod (N)	65.6	51.2	41.7	34.9	29.8	25.7	22.4	19.7
Allowable dynamic	Load offset 0mm	32.4	23.6	18.1	14.4	11.6	9.5	7.7	6.2
load at end of rod (N)	Load offset 100mm	25.6	19.7	15.7	12.7	10.4	8.6	7.1	5.7
Allowable static torqu	Allowable static torque at end of rod (N•m)			4.3	3.7	3.2	2.8	2.6	2.3
Allowable dynamic to	2.6	2.0	1.6	1.3	1.0	0.9	0.7	0.6	
Mass	Without brake	2.1	2.4	2.6	2.9	3.2	3.4	3.7	4.0
(kg)	With brake	2.3	2.6	2.9	3.1	3.4	3.7	3.9	4.2

Applicable Cont	roller									
RCP4 series actuators can be operated with the controller indicated below. Select the type according to your intended application.										
Name	External view	Model number	Features	Maximum number of positioning points	Input power	Power supply capacity		Reference page		
Positioner type	-	PCON-CA-42PI-NP-□-0-□ PCON-CA-42PI-PN-□-0-□	Equipped with a high-output driver Positioner type based on PIO control	512 points						
Pulse-train type		PCON-CA-42PI-PLN-□-0-□ PCON-CA-42PI-PLP-□-0-□	Equipped with a high-output driver Pulse-train input type	—	—			Refer to P. 41		
Field network type		PCON-CA-42PI-△-0-0-□	Equipped with a high-output driver Supporting 7 major field networks	768 points	DC24V					
Positioner multi-axis specification PIO type	1111	MSEP-C-□-~-NP-□-0-□ MSEP-C-□-~-PN-□-0-□	Positioner type based on PIO control, allowing up to 8 axes to be connected (high-output driver not supported)	3 points		Refer to the		Refer to		
Positioner multi-axis specification Network type		MSEP-C-□-~-△-0-0-□	Field network-ready positioner type, allowing up to 8 axes to be connected (high-output driver not supported)	256 points		MSEP catalog.		catalog.		

Actuator Specifications

Eedus allu Fayloaus						
Model number	Lead	Connected	Maximum	payload	Max. push	Stroke
Model Humber	(mm)	controller	Horizontal (kg)	Vertical (kg)	force (N)	(mm)
RCP4-RA6R-I-56P-24-①-P3-②-③	24	PCON-CA	20	3	182	
hCF4-hA0h-1-30F-24-[]-F3-[]-[3		MSEP-C	18	3 (*)	102	
RCP4-RA6R-I-56P-16-①-P3-②-③	16	PCON-CA	50	8	273	50~500
ICF4-IIA0II-1-50F-10-[[]-F5-[2]-[3]		MSEP-C	40 (*)	5 (*)	275	
RCP4-RA6R-I-56P-8-①-P3-②-③	8	PCON-CA	60	18	547	(every 50mm)
NCF4-NAON-1-30F-8-1	0	MSEP-C	50 (*)	17.5 (*)	547	50
RCP4-RA6R-I-56P-4-①-P3-②-③	4	PCON-CA	80	28	1094	
1.Cr4-1.A01-1-50r-4-[]-F5-[]-[3	4	MSEP-C	55 (*)	26 (*)	1094	

Stroke and Maximum Speed Lead (mm) Connected cont

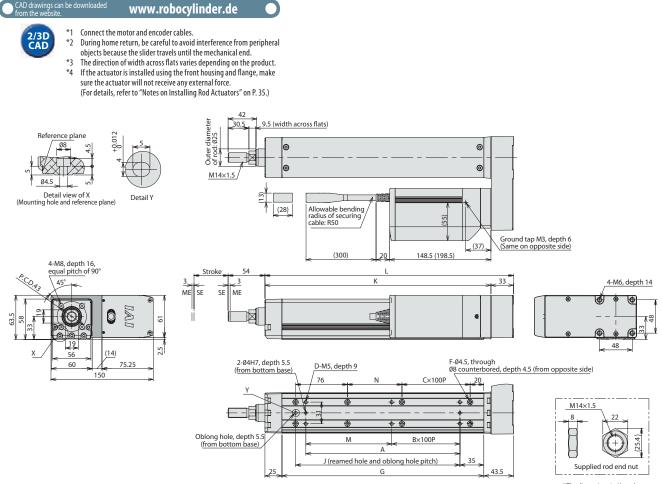
	Lead (mm)	Connected controller	50~500 (every 50mm)
	24	PCON-CA	800<600>
	24	MSEP-C	600<400>
	16	PCON-CA	560
		MSEP-C	420
	8	PCON-CA	420<350>
	0	MSEP-C	210
	4	PCON-CA	175
	4	MSEP-C	140
	The values in $< >$ app	oly when the actuator is used vert	ically. (unit: mm/s)

Code explanation ① Stroke ② Cable length ③ Options (*) When operated at 0.2 G

Cable Length	
Туре	Cable symbol
	P (1m)
Standard type	S (3m)
	M (5m)
	X06 (6m) ~X10 (10m)
Special length	X11 (11m) ~X15 (15m)
	X16 (16m) ~X20 (20m)
	R01 (1m) ~R03 (3m)
	R04 (4m) ~R05 (5m)
Robot cable	R06 (6m) ~R10 (10m)
	R11 (11m) ~R15 (15m)
	R16 (16m) ~R20 (20m)

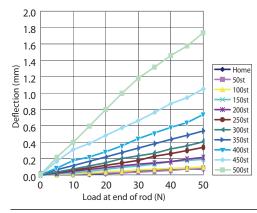
Options		
Name	Option code	See page
Brake	В	P8
Optional cable exit direction (top)	CJT	P8
Optional cable exit direction (outside)	OLD	P8
Optional cable exit direction (bottom)	CJB	P8
Flange bracket	FL	P8
Motor side-mounted to the left (standard)	ML	P8
Motor side-mounted to the right	MR	P8
Non-motor end specification	NM	P8
Scraper	SC	P8

Actuator Specifications


ltem	Description					
Drive system	Ball screw Ø12 mm, rolled C10					
Positioning repeatability (*1)	±0.02mm [±0.03mm]					
Lost motion	0.1mm or less					
Rod	Ø25mm stainless steel pipe					
Rod non-rotation precision	±0.1 deg					
Allowable rod load mass	Refer to P. 28 and P. 36					
Rod tip overhang distance	100mm or less					
Ambient operating temperature, humidity	0 to 40°C, 85% RH or less (Non-condensing)					

(*1) The value at lead 24 is shown in [].

Offset distance at end of rod (100mm or less)



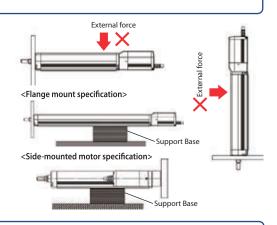
*The dimensions in () apply when a brake is equipped.

Rod Deflection of RCP4-RA6R (Reference Values)

(The graph below plots deflection as measured by installing the actuator vertically and applying a radial force to the rod from one side.)

Dimensions and Mass by Stroke

Sti	oke	50	100	150	200	250	300	350	400	450	500
	L		264.5	314.5	364.5	414.5	464.5	514.5	564.5	614.5	664.5
	A	76	126	176	226	276	326	376	426	476	526
	В	0	0	1	1	2	2	3	3	4	4
	C	0	0	0	1	1	2	2	3	3	4
	D	4	4	6	6	8	8	10	10	12	12
	F	6	6	6	8	8	10	10	12	12	14
	G	146	196	246	296	346	396	446	496	546	596
	J	91	141	191	241	291	341	391	441	491	541
	K	181.5	231.5	281.5	331.5	381.5	431.5	481.5	531.5	581.5	631.5
	M	76	126	76	126	76	126	76	126	76	126
	N	30	80	130	80	130	80	130	80	130	80
Allowable static lo	ad at end of rod (N)	112.7	91.5	76.7	65.7	57.2	50.4	44.8	40.2	36.2	32.7
Allowable dynamic	Load offset 0mm	49.0	37.4	29.9	24.5	20.4	17.1	14.5	12.3	10.3	8.6
load at end of rod (N)	Load offset 100mm	38.7	31.0	25.5	21.4	18.1	15.4	13.2	11.2	9.5	8.0
Allowable static torqu	e at end of rod (N•m)	11.4	9.3	7.9	6.8	6.0	5.4	4.9	4.5	4.1	3.8
Allowable dynamic torque at end of rod (N•m)		3.9	3.1	2.5	2.1	1.8	1.5	1.3	1.1	1.0	0.8
Mass	Without brake	3.9	4.2	4.5	4.8	5.1	5.5	5.8	6.1	6.4	6.8
(kg)	With brake	4.4	4.7	5.0	5.3	5.6	6.0	6.3	6.6	6.9	7.3


Applicable Contr	oller	_									
RCP4 series actuators can be operated with the controller indicated below. Select the type according to your intended application.											
Name	External view	Model number	Features	Maximum number of positioning points	Input power	Power supply capacity		Reference page			
Positioner type		PCON-CA-56PI-NP-□-0-□ PCON-CA-56PI-PN-□-0-□	Equipped with a high-output driver Positioner type based on PIO control	512 points							
Pulse-train type			Equipped with a high-output driver Pulse-train input type	_		Refer to P. 48		Refer to P. 41			
Field network type		PCON-CA-56PI-△-0-0-□	Equipped with a high-output driver Supporting 7 major field networks	768 points	DC24V						
Positioner multi-axis specification PIO type	MSEP-C-□-~-NP-□-0-□ F MSEP-C-□-~-PN-□-0-□ F		Positioner type based on PIO control, allowing up to 8 axes to be connected (high-output driver not supported)	3 points		Refer to the		Refer to the MSEP			
Positioner multi-axis specification Network type	1111 ₋	MSEP-C-□-~-△-0-0-□	Field network-ready positioner type, allowing up to 8 axes to be connected (high-output driver not supported)	256 points		MSEP catalog.		catalog.			
		* In the model numbers shown ab	ove, $ riangle$ indicates the field network specification (DV, CC, PR, CN, ML, EC, I	EP or PT).							

Notes on Installing Rod Actuators

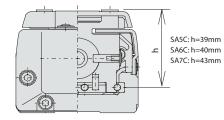
When installing the actuator using the front housing or with a flange (optional), make sure the actuator will not receive external forces. (External forces may cause malfunction or damaged parts.) If the actuator will receive external forces or when the actuator is combined with a Cartesian robot, etc., use the mounting holes on the actuator base to secure the actuator.

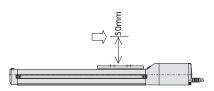
Even when the actuator does not receive any external force, provide a support base to support the actuator, as shown in the figure on the right, if the actuator is installed horizontally and secured using a flange or through the bracket mounting holes of the side-mounted motor specification.

Selection Guideline (Correlation Diagram of Push Force and Current-limiting Value)

In push-motion operation, the push force can be used by changing the current-limiting value of the controller over a range of 20% to 70%. The maximum push-force varies depending on the model, so check the required push force from the table below and select an appropriate type meeting the purpose of use.

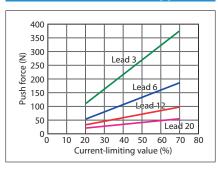
When performing push-motion operation using a slider actuator, limit the push current so that the reactive force moment generated by the push force will not exceed 80% of the rated moment (Ma, Mb) specified in the catalog. To help with the moment calculations, the application position of the guide moment is shown in the figure below. Calculate the necessary moment by considering the offset of the push force application position.

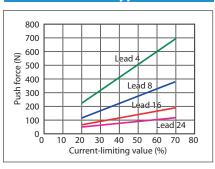

Note that if an excessive force exceeding the rated moment is applied, the guide may be damaged and the life may become shorter. Accordingly, include a sufficient safety factor when deciding on the push force.


Calculation example:

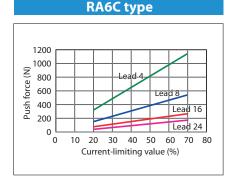
If push-motion operation is performed with a RCP4-SA7C by applying 100 N at the position shown to the right, the moment received by the guide, or Ma, is calculated as $(43 + 50) \times 100 = 9300$ (N•mm) = 9.3 (N•m).

Since the rated moment Ma of the SA7C is 13.9 (N•m),


 $13.9 \times 0.8 = 11.12 > 9.3$, suggesting that this selection is acceptable. If a Mb moment generates due to push-motion operation, calculate the moment from the overhang and confirm, in the same way, that the calculated moment is within 80% of the rated moment.


Correlation Diagrams of Push Force and Current-limiting value

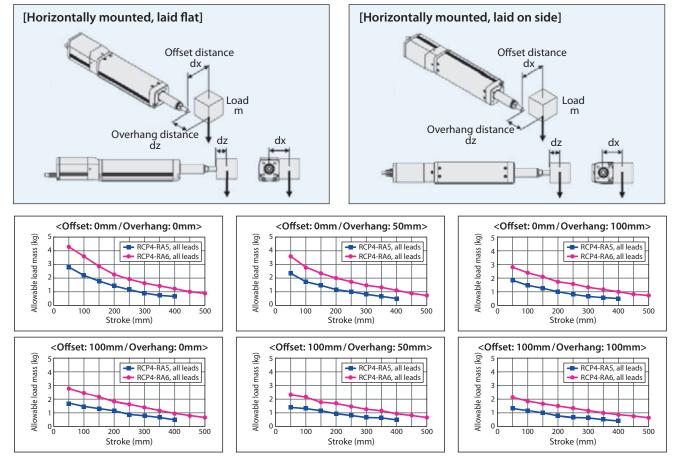
SA5C/SA6C/RA5C type



Notes on Use

SA7C type

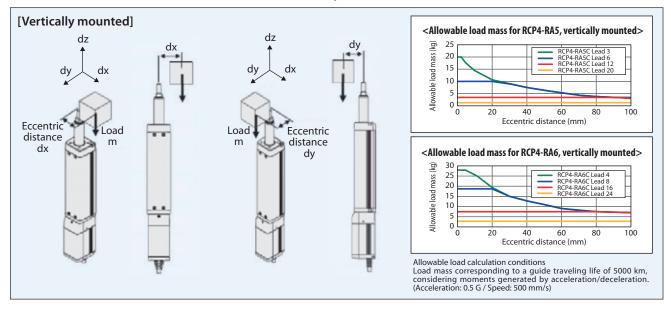
e table below is only a reference, and the graphs may y slightly from the actual values.



The relationship of push force and current-limiting value is only a reference, and the graphs may vary slightly from the actual values.
If the current-limiting value is less than 20%, the push force may vary. Make sure the current-limiting value remains 20% or more.
The graphs assume a traveling speed of 20 mm/s during push-motion operation.

Selection References (Guide for Selecting Allowable Load for Radial Cylinder)

The radial cylinder has a built-in guide, so loads up to a certain level can be applied to the rod without using an external guide. Refer to the graphs below for the allowable load mass. If the allowable load will be exceeded under the required operating conditions, add an external guide.


■ Allowable load mass for RCP4-RA5□/6□, horizontally mounted

Allowable load calculation conditions

Load mass corresponding to a guide traveling life of 5000 km, considering moments generated by acceleration/deceleration. (Acceleration: 1 G / Speed: 500 mm/s)

■Allowable load mass for RCP4-RA5□/6□, vertically mounted

Selection Guideline (Table of RCP4 Payload by Speed/Acceleration)

The tables on P. 37 to P. 40 show payloads by acceleration and speed. Since the payload drops as the acceleration and speed increase, select from the tables and use a model that meets the required conditions. The applicable payload table varies depending on the actuator model and connected controller, so select and check the table for the model you will be using.

RCP4 motor coupling specification + PCON-CA * The same tables apply when the RCP4CR is used.

RCP4-RA5C, Lead 20

Orientation		Но	rizor	Vertical						
Speed		Acceleration (G)								
(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5		
0	6	6	6	5	5	1.5	1.5	1.5		
160	6	6	6	5	5	1.5	1.5	1.5		
320	б	6	6	5	3	1.5	1.5	1.5		
480	6	6	6	5	3	1.5	1.5	1.5		
640		6	4	3	2		1.5	1.5		
800		4	3				1	1		
							(Uni	it: kg)		

RCP	RCP4-RA5C, Lead 12											
Orientation		Horizontal Vertical										
Speed			Acc	elera	atior	n (G)						
(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5				
0	25	25	18	16	12	4	4	4				
100	25	25	18	16	12	4	4	4				
200	25	25	18	16	10	4	4	4				
300	25	25	18	12	8	4	4	4				
400	20	20	14	10	6	4	4	4				
500	15	15	8	6	4	4	3.5	3				
600	10	10	6	3	2	4	3	2				
700		6	2				2	1				
							(Uni	t: kg				

RCP4-RA6C, Lead 24

Orientation		Ho	rizor	Vertical							
Speed		Acceleration (G)									
(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5			
0	20	20	18	15	12	3	3	3			
200	20	20	18	15	12	3	3	3			
400	20	20	18	15	10	3	3	3			
600	15	14	9	7	4	3	3	2			
800		5	1								
							(Uni	it: kg)			

RCP4-RA6C, Lead 16

ntation		Ho	rizor	ntal		Vertical			
beed			Acc	elera	atior	n (G)			
m/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5	
0	50	50	40	35	30	8	8	8	
40	50	50	40	35	30	8	8	8	
80	50	50	35	25	20	8	7	7	
20	50	25	18	14	10	6	4.5	4	
60	12	10	5	3	2	4	2	1	
'00	3	2							
							(Uni	t: kg)	

RCP4-RA5C, Lead 6 Orientation Horizontal Vertical Acceleration (G) Speed (mm/s) 0.1 0.3 0.5 0.7 1 0.1 0.3 0.5 40 40 35 30 25 10 10 10 0 **50** 40 40 35 30 25 10 10 10 0 0 5 3

Or	ientation		Ho	rizor	Ve	ertica	al				
	peed		Acceleration (G)								
(r	nm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5		
	0	60	60	50	45	40	20	20	20		
	25	60	60	50	45	40	20	20	20		
	50	60	60	50	45	40	20	20	20		
	75	60	60	50	45	40	20	20	20		
	100	60	60	50	45	40	20	20	20		
	125	60	60	50	40	30	18	14	10		
	150	60	50	40	30	25	14	10	6		
	175	60	40	35	25	20	12	6	5		
	200	60	35	30	20	14	8	5	4.5		
	225	40	16	16	10	6	5	5	4		
								(Uni	t: kg)		

RCP4-RA5C, Lead 3

RCP4-RA6C Lead 4

nCP	nCF4-nAOC, Leau 4												
Orientation		Horizontal Vertical											
Speed			Acc	elera	atior	n (G)							
(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5					
0	80	80	70	65	60	28	28	28					
35	80	80	70	65	60	28	28	28					
70	80	80	70	65	60	28	28	28					
105	80	80	60	50	40	22	20	18					
140	80	50	30	20	15	16	12	10					
175	50	15				9	4						
210	20					2							
							(Uni	t: ka)					

(Unit: kg)

50	70	40	55	50	25	10	10	10			
100	40	40	35	30	25	10	10	10			
150	40	40	35	25	25	10	10	10			
200	40	40	30	25	20	10	10	10			
250	40	40	27.5	22.5	18	10	9	8			
300	40	35	25	20	14	6	6	6			
350	40	30	14	12	10	5	5	5			
400	30	18	10	6	5	4	3	3			
450	25	8	3			2	2	1			
(Unit: kg)											
RCP4-RA6C, Lead 8											

 Speed
 Acceleration (G)

 (mm/s)
 0.1
 0.3
 0.5
 0.7
 1
 0.1
 0.3
 0.5

Orientation

	0.1	0.5	0.5	0.7		0.1	0.5	0.5		
0	60	60	50	45	40	18	18	18		
70	60	60	50	45	40	18	18	18		
140	60	60	50	45	40	16	16	12		
210	60	60	40	31	26	10	10	9		
280	60	34	22	15	11	8	7	6		
350	60	14	5	1		3	3	2		
						2				
420	15	1				2				
420	15	1				2	(Uni	it: kg)		
420	15	1				2	(Uni	it: kg)		
420	15	1				2	(Uni	it: kg)		
420	15	1				2	(Uni	it: kg)		
420	15	1				2	(Uni	it: kg)		
420	15	1				2	(Uni	it: kg)		
420	15	1				2	(Uni	it: kg)		
420	15	1				2	(Uni	it: kg)	,]	

Horizontal Vertical

2 RCP4 motor coupled specification + MSEP-C * The same tables apply when the RCP4CR is used.

RCP4-RA5C, Lead 20

Orientation	H	loriz	al	Ver	tical			
Speed		Acc	elera	atior	า (G)			
(mm/s)	0.2	0.3	0.5	0.7	0.1	0.2		
0		6				1.5		
160		6				1.5		
320		6				1.5		
480		4				1		
640		3				0.5		
(Unit: kg)								

RCP4-RA5C, Lead 12

Orientation	H	loriz	onta	al	Ve	ertic	al
Speed		A	ccele	erati	on ((G)	
(mm/s)	0.2	0.3	0.5	0.7	0.1	0.2	0.3
0	25					4	
100	25					4	
200	25					4	
300	20					3	
400	10					2	
500	5					1	
					-	(Uni	t: kg)

RCP4-RA5C, Lead 6

Orientation	ŀ	loriz	onta	V	ertic	al				
Speed		A	ccel	erati	on (G)				
(mm/s)	0.2	0.3	0.5	0.7	0.1	0.2	0.3			
0	40					10				
50	40					10				
100	40					10				
150	40					8				
200	35					5				
250	10					3				
	(Unit: kg)									

RCP4-RA5C, Lead 3

Orientation	H	loriz	onta	Ve	ertic	al				
Speed		A	ccele	erati	on (G)				
(mm/s)	0.2	0.3	0.5	0.7	0.1	0.2	0.3			
0	40					20				
25	40					20				
50	40					16				
75	40					12				
100	40					9				
125	40					5				
	(Unit: kg)									

RCP4-RA6C, Lead 24

Orientation	H	loriz	Ver	tical								
Speed		Acc	elera	atior	า (G)							
(mm/s)	0.2	0.3	0.5	0.7	0.1	0.2						
0		18				3						
200		18				3						
400		10				2						
600		1										
			(Unit: kg)									

RCP4-RA6C, Lead 16

Orientation	H	loriz	onta	Vertical					
Speed		A	ccele	erati	on ((G)			
(mm/s)	0.2	0.3	0.5	0.7	0.1	0.2	0.3		
0	40					5			
140	40					5			
280	30					3			
420	15					1			
(Unit: kg)									

RCP4-RA6C, Lead 8

Orientation	H	loriz	onta	Vertical					
Speed		A	ccele	erati	on (on (G)			
(mm/s)	0.2	0.3	0.5	0.7	0.1	0.2	0.3		
0	50					17.5			
70	50					17.5			
140	50					7			
210	30					2			
(Unit: kg)									

RCP4-RA6C, Lead 4

Orientation	H	loriz	onta	Ve	ertic	al		
Speed		A	ccele	erati	on (G)		
(mm/s)	0.2	0.3	0.5	0.7	0.1	0.2	0.3	
0	55					26		
35	55			26				
70	55					15		
105	55					4		
140	35					2		
						(Uni	t: kg)	

Selection Guideline (Table of RCP4 Payload by Speed/Acceleration)

3 RCP4 side-mounted motor specification + PCON-CA

RCP4-RA5R, Lead 20

Orientation		Ho	rizor	Vertical				
Speed			Acc	elera	atior	า (G)		
(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5
0	6	6	6	5	5	1.5	1.5	1.5
160	6	6	6	5	5	1.5	1.5	1.5
320	6	6	6	5	3	1.5	1.5	1.5
480	6	6	6	5	3	1.5	1.5	1.5
640		6	4	3	2		1.5	1.5
800		4	3				1	1
							(Uni	t: kg)

RCP4-RA6R, Lead 24

Orientation		Ho	rizor	ntal		Ve	ertica	al
Speed			Acc	elera	atior	า (G)		
(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5
0	20	20	18	15	12	3	3	3
200	20	20	18	15	12	3	3	3
400	20	20	18	15	10	3	3	3
600	15	14	9	7	4	3	3	2
800		3	1					
							(Uni	t: kg

RCP4-RA5R, Lead 12

Orientation		Ho	rizor	Ve	ertica	al		
Speed			Acc	elera	atior	า (G)		
(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5
0	25	25	18	16	12	4	4	4
100	25	25	18	16	12	4	4	4
200	25	25	18	16	10	4	4	4
300	25	25	18	12	8	4	4	4
400	20	20	14	10	6	4	4	4
500	15	15	8	6	4	4	3.5	3
600	10	10	6	3	2	4	3	2
700		6	2				2	1
							(Uni	t: kg)

RCP4-RA6R, Lead 16

Orientation		Ho	rizor	Ve	ertica	al		
Speed			Acc	elera	atior	n (G)		
(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5
0	50	50	40	35	30	8	8	8
140	50	50	40	35	30	8	8	8
280	50	50	35	25	20	8	7	7
420	50	25	18	14	10	4.5	4.5	4
560	12	10	5	3	2	2	1	1
							(Uni	t: kg)

(Unit: kg)

(Unit: kg)

RCP4-RA5R, Lead 3

			,					
Orientation		Ho	rizor	Ve	ertica	al		
Speed			Acc	elera	atior	า (G)		
(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5
0	60	60	50	45	40	20	20	20
25	60	60	50	45	40	20	20	20
50	60	60	50	45	40	20	20	20
75	60	60	50	45	40	20	20	20
100	60	60	50	45	40	20	20	20
125	60	60	50	40	30	18	14	10
150	60	50	40	30	25	14	10	6
175	60	40	35	25	20	12	6	5
200	60	35	30	20	14	8	5	4.5
225	40	16	16	10	6	5	5	4

RCP4-RA6R, Lead 8

RCP4-RA5R, Lead 6

Orientation

Horizontal Vertical

 Speed (mm/s)
 Acceleration (G)

 0.1
 0.3
 0.5
 0.7
 1
 0.1
 0.3
 0.5

 Image
 <th

 300
 40
 35
 25
 20
 14
 6
 6
 6

 300
 40
 30
 14
 12
 10
 5
 5

 400
 30
 14
 12
 10
 5
 5

 400
 30
 18
 10
 6
 5
 4
 3
 3

 450
 25
 8
 3

 2
 2
 1

Orientation		Ho	Ve	ertica	al			
Speed			Acc	elera	atior	n (G)		
(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5
0	60	60	50	45	40	18	18	18
70	60	60	50	45	40	18	18	18
140	60	60	50	45	40	16	16	12
210	60	60	40	31	26	10	10	9
280	60	26	16	10	8	8	5	3
350	30	3				3	1	
420	2							
					-		(Uni	t: kg)

Orientation		Но	rizor	Ve	ertica	al		
Speed			Acc	elera	atior	า (G)		
(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5
0	80	80	70	65	60	28	28	28
35	80	80	70	65	60	28	28	28
70	80	80	70	65	60	28	28	28
105	80	80	60	50	40	22	20	18
140	80	50	10	6	6	13	8	3
175	40	5				4		
							(Uni	t: kg)

Find the RCP4-RA3 series at the back of this catalogue

4 RCP4 side-mounted motor specification + MSEP-C

RC	P4-	RA	\5E	S. I.	ea	d	20

Orientation	H	loriz	Ver	tical		
Speed		Acc	elera	atior	า (G)	
(mm/s)	0.2	0.3	0.5	0.7	0.1	0.2
0		6				1.5
160		6				1.5
320		6				1.5
480		4				1
640		3				0.5
					(Uni	t: kg)

Orientation	H	Horizontal Vertical									
Speed		A	ccele	erati	on ((G)					
(mm/s)	0.2	0.3	0.5	0.7	0.1	0.2	0.3				
0	25					4					
100	25					4					
200	25					4					
300	20					3					
400	10					2					
500	5					1					

Orientation	H	Horizontal Vertical								
Speed		Acceleration (G)								
(mm/s)	0.2	0.3	0.5	0.7	0.1	0.2	0.3			
0	40					10				
50	40					10				
100	40					10				
150	40					8				
200	35					5				
250	10					3				

RCP4-RA5R, Lead 3

Orientation	H	loriz	onta	al	Ve	ertic	al		
Speed		Acceleration (G)							
(mm/s)	0.2	0.3	0.5	0.7	0.1	0.2	0.3		
0	40					20			
25	40					20			
50	40					16			
75	40					12			
100	40					9			
125	40					5			
						(Uni	t: kg)		

Unit: kg)

RCP4-RA6R, Lead 24

Orientation	H	loriz	Ver	tical					
Speed		Acceleration (G)							
(mm/s)	0.2	0.3	0.5	0.7	0.1	0.2			
0		18				3			
200		18				3			
400		10				2			
600		1							
					(Uni	t: kg)			

RCP4-RA6R, Lead 16										
Orientation	H	Horizontal Vertical								
Speed		Acceleration (G)								
(mm/s)	0.2	0.3	0.5	0.7	0.1	0.2	0.3			
0	40					5				
140	40					5				
280	30					3				
420	6					0.5				
						(Uni	t: kg)			

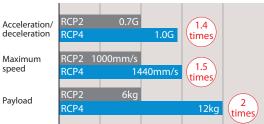
RCP4-RA6R, Lead 8

Orientation	H	loriz	onta	Vertical				
Speed		A	ccele	erati	on (G)			
(mm/s)	0.2	0.3	0.5	0.7	0.1	0.2	0.3	
0	50					17.5		
70	50					17.5		
140	50					7		
210	30					2		
						(Uni	t: kg)	

RCP4-RA6R, Lead 4

Orientation	H	loriz	onta	Vertical						
Speed	Acceleration (G)									
(mm/s)	0.2	0.3	0.5	0.7	0.1	0.2	0.3			
0	55					26				
35	55					26				
70	55					15				
105	55					4				
140	5					0.5				
						(Uni	t: kg)			

Find the RCP4-RA3 series at the back of this catalogue


PCON-CA

Positioner / Field network / Pulse-train Type Controller with High-output Driver for RCP4 <PowerCon 150>

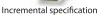
Built-in high-output driver designed exclusively for RCP4 generates greater torque at high speed

The newly developed high-output driver (patent pending) achieves significantly improved specifications compared to conventional models (RCP2 series), with the acceleration/ deceleration higher by 1.4 times, maximum speed by 1.5 times, and payload twice as large.

(*) The rates of improvement vary depending on the type.

DeviceNet, CC-Link, PROFIBUS-DP, CompoNet, MECHATROLINK (I, II), EtherCAT, EtherNet/IP, PROFINET are supported

Features include wire-saving design, as well as the abilities to support direct numerical specification, position number specification, current position read, etc.


3

Incremental specification and simple absolute specification to choose from

You can choose one of the two types: the incremental specification and the simple absolute specification. The simple absolute specification is available in three types, including the specification having only the absolute battery attached on the side face of the actuator, specification equipped with the absolute battery unit where screw stopper/DIN rail mounting is possible, and controlleronly specification without absolute battery. Absolute battery

Send

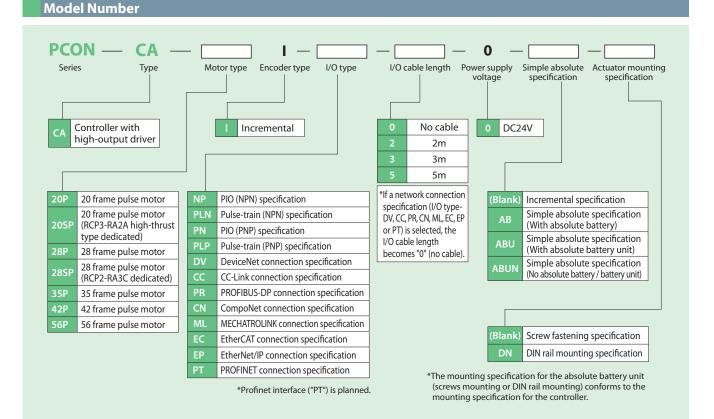
(Note) All pulse-train PowerCon controllers are of the incremental specification.

Simple absolute specification

Smart tuning function, maintenance information, calendar function

The takt time minimization function sets an optimal acceleration/deceleration rate according to the load that is available (*). You can also record the number of times the actuator has moved and the distance that it has travelled, for use in maintenance.

(*) You need PC software Ver. 8.03.00.00 or later or a CON-PTA (teaching pendant) to use the takt time minimization function.

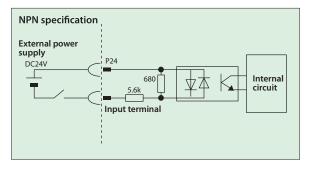

	· Di reni inditeri							-14.83	
a moving	R. A. A.	ð			2013		1000		
a may area	BOLLAR. DI	A ADDRESS OF TAXABLE	100		MI		10000	Contraction in the local division of the local divisio division of the local division of the local division of	
			-				Steal and	COLUMN STREET	
		of Assault is to	Paul .				1000 400	CONTRACTOR DECISION AND	
		B Second area		6			1000.000	Service Incode	
		or assessed on the	a believe badance					and the second second	
	NUMBER OF TAXABLE	de located antes	a ballings indicate					Longitudes advantages	
	Station of Lot	If freedily in the						artisti state	
	Participant 1	and services and						al	
	Total Th	ALL	Bodel		el Iml Ille	obsectional datasets	diam-	lowed and	n min - bined diet
	And 10 1	ana na ha inn	8479-1	WHE .	IL SUL	280 Ban	a Buttong B	Ciating	\$1000 (PH)
	Pud et	and the second second							distant of the local distance of the local d
	And in Fer	Silam Berry	ALC NO. P.	and the lot of the other	and the second second	Annual - A statement	Contraction of the local division of the loc		
		111 mil 127		11 (10)	let 1	lawi kinte	Contract of the	36.	
				0 101	11211	Jam' Mode	()m(seefice)	81	

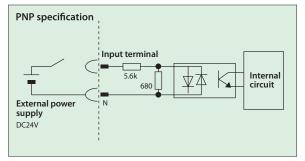
List of Models

RoboCylinder Position Controller PowerCon 150 < PCON-CA>

Ex	ternal view			Field network type (*)						
	I/O type					Field	network ty	pe (*)		
			Pulse-train type	DeviceNet	CC-Link	₽ŖŎĔŢ [®] BŪŚĹ	CompoNet	MECHATROLINE	Ether CAT	EtherNet/IP>
		type		DeviceNet connection specification	CC-Link connection specification	PROFIBUS-DP connection specification	CompoNet connection specification	MECHATROLINK connection specification	EtherCAT connection specification	EtherNet/IP connection specification
I/O type	model number	NP/PN	PLN/PLP	DV	СС	PR	CN	ML	EC	EP
Increm	ental specification	0	0	0	0	0	0	0	0	0
	With absolute battery	0	-	0	0	0	0	0	0	0
	Simple With absolute battery unit		-	0	0	0	0	0	0	0
opecificati	No absolute battery	0	-	0	0	0	0		0	0

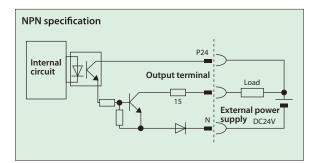
(*) PROFINET connection specification is planned.

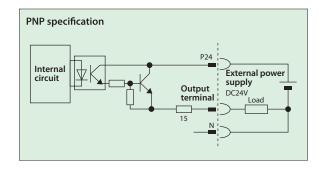

The PCON-CA controller can achieve high-speed, high-payload operations only when Note: combined with RCP4 actuators. RCP2/RCP3 actuators also work with the PCON-CA controller, but only according to their original actuator specifications.



PIO I/O Interface

Input Part External Input Specifications


Item	Specification
Input voltage	24 VDC ± 10%
Input current	5mA, 1 circuit
ON/OFF voltage	ON voltage: 18 VDC min. OFF voltage: 6 VDC max.



Output Part External Output Specifications

ltem	Specification
Load voltage	24 VDC
Maximum load current	50mA, 1 circuit
Leak current	2mA max. per point

Types of PIO Patterns (Control Patterns)

This controller supports seven types of control methods. Select in Parameter No. 25, "PIO pattern selection" the PIO pattern that best suits your purpose of use.

Туре	Set value of Parameter No. 25	Mode	Overview
PIO pattern 0	0 (factory setting)	Positioning mode (standard type)	 Number of positioning points: 64 points Position number command: Binary Coded Decimal (BCD) Zone signal output*: 1 point Position zone signal output*2: 1 point
PIO pattern 1	1	Teaching mode (teaching type)	 Number of positioning points: 64 points Position number command: Binary Coded Decimal (BCD) Position zone signal output*²: 1 point • Jog (inching) operation using PIO signals is supported. Current position data can be written to the position table using PIO signals.
PIO pattern 2	2	256-point mode (256 positioning points)	 Number of positioning points: 256 points Position number command: Binary Coded Decimal (BCD) Position zone signal output*²: 1 point
PIO pattern 3	3	512-point mode (512 positioning points)	Number of positioning points: 512 points Position number command: Binary Coded Decimal (BCD) No zone signal output
PIO pattern 4	4	Solenoid valve mode 1 (7-point type)	 Number of positioning points: 7 points Position number command: Individual number signal ON Zone signal output*: 1 point Position zone signal output*²: 1 point
PIO pattern 5	5	Solenoid valve mode 2 (3-point type)	 Number of positioning points: 3 points Position number command: Individual number signal ON Completion signal: A signal equivalent to a LS (limit switch) signal can be output. Zone signal output*: 1 point Position zone signal output*²: 1 point
PIO pattern 6 (Note)	6	Pulse-train control mode	Differential pulse input (200 kpps max.) Home return function Zone signal output*: 2 points No feedback pulse output

*1 Zone signal output: A desired zone is set by Parameter Nos. 1 and 2 or 23 and 24, and the set zone always remains effective once home return has completed.

*2 Position zone signal output: This function is available as part of a position number. A desired zone is set in the position table and becomes effective only when the corresponding position is specified, but not with commands specifying other positions.

(Note) Pulse Train Control Model is available only if the pulse train control type is indicated (from PCON-CA-*-PLN and PLP) at the time of purchase.

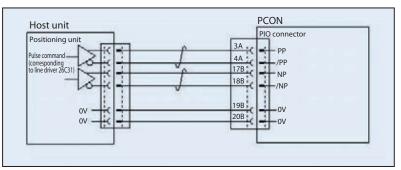
PIO Patterns and Signal Assignments

The table below lists the signal assignments for the I/O flat cable under different PIO patterns. Connect an external device (such as a PLC) according to this table.

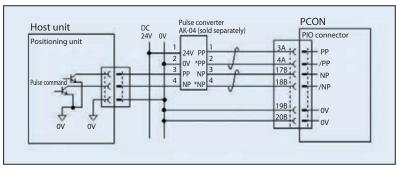
					Parameter No. 25, "F	PIO pattern selection"						
	Category	PIO function	0	1	2	3	4	5				
			Positioning mode	Teaching mode	256-point mode	512-point mode	Solenoid valve mode 1	Solenoid valve mo 2				
		Number of positioning points	64 points	64 points	256 points	512 points	7 points	3 points				
		Home return signal	0	0	0	0	0					
Pin mber	Input	Jog signal	_	0	_	_	_	_				
		Teaching signal (writing of current position)	_	0	_	_	_	_				
		Brake release	0	_	0	0	0	0				
		Moving signal	0	0	_	_	_	_				
	Output	Zone signal	0	△ (Note 1)	△ (Note 1)	_	0	0				
		Position zone signal	0	0	0		0	0				
1A	24V	i osition zone signa		Ŭ	P24		Ū					
2A	24V		P24									
3A	Pulse											
4A	input				_							
5A		INO	PC1	PC1	PC1	PC1	ST0	ST0				
6A		IN1	PC2	PC2	PC2	PC2	ST1	ST1(JOG+)				
7A		IN2	PC4	PC4	PC4	PC4	ST2	ST2(-)				
8A		IN3	PC8	PC8	PC8	PC8	ST3	_				
9A		IN4	PC16	PC16	PC16	PC16	ST4	—				
0A		IN5	PC32	PC32	PC32	PC32	ST5	—				
1A		IN6	_	MODE	PC64	PC64	ST6					
2A		IN7	_	JISL	PC128	PC128	_	_				
3A	Input	IN8	_	JOG+	_	PC256	_	_				
4A		IN9	BKRL	JOG-	BKRL	BKRL	BKRL	BKRL				
5A		IN10	RMOD	RMOD	RMOD	RMOD	RMOD	RMOD				
6A		IN11	HOME	HOME	HOME	HOME	HOME	—				
7A		IN12	*STP	*STP	*STP	*STP	*STP	_				
18A		IN13	CSTR	CSTR/PWRT	CSTR	CSTR	—	—				
9A		IN14	RES	RES	RES	RES	RES	RES				
20A		IN15	SON	SON	SON	SON	SON	SON				
1B		OUT0	PM1(ALM1)	PM1(ALM1)	PM1(ALM1)	PM1(ALM1)	PEO	LSO				
2B		OUT1	PM2(ALM2)	PM2(ALM2)	PM2(ALM2)	PM2(ALM2)	PE1	LS1(TRQS)				
3B		OUT2	PM4(ALM4)	PM4(ALM4)	PM4(ALM4)	PM4(ALM4)	PE2	LS2 (Note				
4B		OUT3	PM8(ALM8)	PM8(ALM8)	PM8(ALM8)	PM8(ALM8)	PE3	—				
5B		OUT4	PM16	PM16	PM16	PM16	PE4	_				
6B		OUT5	PM32	PM32	PM32	PM32	PE5					
7B		OUT6	MOVE	MOVE	PM64	PM64	PE6					
BB	Output	OUT7	ZONE1	MODES	PM128	PM128	ZONE1	ZONE1				
9B	Output	OUT8	PZONE/ZONE2	PZONE/ZONE1	PZONE/ZONE1	PM256	PZONE/ZONE2	PZONE/ZONE2				
0B		OUT9	RMDS	RMDS	RMDS	RMDS	RMDS	RMDS				
1B		OUT10	HEND	HEND	HEND	HEND	HEND	HEND				
2B		OUT11	PEND	PEND/WEND	PEND	PEND	PEND	—				
3B		OUT12	SV	SV	SV	SV	SV	SV				
4B		OUT13	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS				
5B		OUT14	*ALM	*ALM	*ALM	*ALM	*ALM	*ALM				
6B		OUT15	LOAD/TRQS *ALML	*ALML	LOAD/TRQS *ALML	LOAD/TRQS *ALML	LOAD/TRQS *ALML	*ALML				
7B	Pulse				_							
8B	input				—							
9B	0V				N							
0B	0V				Ν							

(Note) In the table above, asterisk * symbol accompanying each code indicates a negative logic signal. PM1 to PM8 are alarm binary code output signals that are used when an alarm generates.
 (Note 1) In all PIO patterns other than 3, this signal can be switched with PZONE by setting Parameter No. 149 accordingly.
 (Note 2) The setting will not become effective until the origin return is completed.

Reference) Negative logic signal


Signals denoted by * are negative logic signals. Negative logic input signals are processed when turned OFF. Negative logic output signals normally remain ON while the power is supplied, and turn OFF when the signal is output.

Note: The names of the signals above inside () are functions before the unit returns home.


Pulse-train Control Circuit

Host Unit = Differential Type

Host Unit = Open Collector Type

The AK-04 (optional) is needed to input pulses.

Caution: Use the same power supply for open collector input/output to/from the host and for the AK-04. **Command Pulse Input Patterns** Command pulse-train pattern Input terminal Forward Reverse PP./PP Forward pulse-train Reverse pulse-train NP·/NP ¥ ¥ A forward pulse-train indicates the amount of motor rotation in the forward direction, while a reverse pulse-train indicates the amount of motor rotation in the reverse direction. Pulse-train PP./PP • ¥ ¥ ł Negative logic NP./NP Sign Low High The command pulses indicate the amount of motor rotation, while the sign indicates the rotating direction. PP./PP Ť Phase A/B pulse-train NP·/NP Command phases A and B having a 90° phase difference (multiplier is 4) indicate the amount of rotation and the rotating direction. Forward pulse train PP./PP 1 Reverse pulse-train NP·/NP ſ Pulse-train PP·/PP Positive logic Sign NP·/NP High Low ł PP./PP ſ ſ ł Phase A/B pulse-train NP·/NP

I/O Signals in Pulse-train Control Mode

The table below lists the signal assignments for the flat cable in the pulse-train control mode. Connect an external device (such as PLC) according to this table.

Pin number	Category	I/O number	Signal abbreviation	Signal name	Parameter No. 25, "PIO pattern 6"
1A	24V		P24	Power supply	I/O power supply +24 V
2A	24V		P24	Power supply	I/O power supply +24 V
3A 4A	Pulse input		PP /PP	Differential pulse-train input (+) Differential pulse-train input (-)	Differential pulses are input from the host. Up to 200 kpps can be input.
5A		INO	SON	Servo ON	The servo is ON while this signal is ON, and OFF while the signal is OFF.
6A		IN1	RES	Reset	Present alarms are reset when this signal is turned ON.
7A		IN2	HOME	Home return	Home return operation is performed when this signal is turned ON.
8A		IN3	TL	Torque limit selection	When this signal is turned ON, the motor torque is limited to the value set by the parameter.
9A		IN4	CSTP	Forced stop	The actuator is forcibly stopped when this signal has remained ON for 16 ms or more. The actuator decelerates to a stop at the torque set in the controller and the servo turns OFF.
10A		IN5	DCLR	Deviation counter clear	This signal clears the deviation counter.
11A	Input	IN6	BKRL	Forced brake release	The brake is forcibly released.
12A	·	IN7	RMOD	Operation mode switching	The operation mode can be switched when the MODE switch on the controller is set to AUTO. (AUTO when this signal is OFF, and to MANU when the signal is ON.)
13A		IN8	NC	_	Not used
14A		IN9	NC	—	Not used
15A		IN10	NC	—	Not used
16A		IN11	NC	—	Not used
17A		IN12	NC	—	Not used
18A		IN13	NC	—	Not used
19A		IN14	NC	_	Not used
20A		IN15	NC	—	Not used
1B		OUT0	PWR	System ready	This signal turns ON when the controller becomes ready after the main power has been turned on.
2B		OUT1	SV	Servo ON status	This signal turns ON when the servo is ON.
3B		OUT2	INP	Positioning complete	This signal turns ON when the amount of remaining travel pulses in the deviation counter falls within the in-position band.
4B		OUT3	HEND	Home return complete	This signal turns ON upon completion of home return.
5B		OUT4	TLR	Torque limited	This signal turns ON upon reaching the torque limit while the torque is limited.
6B		OUT5	*ALM	Controller alarm status	This signal turns ON when the controller is normal, and turns OFF when an alarm generates.
7B	Output	OUT6	*EMGS	Emergency stop status	This signal turns ON when the emergency stop of the controller is cancelled, and turns OFF when an emergency stop is actuated.
8B		OUT7	RMDS	Operation mode status	The operation mode status is output. This signal turns ON when the controller is in the manual mode.
9B		OUT8	ALM1		
10B		OUT9	ALM2	Alarm code output signal	An alarm code is output when an alarm generates.
11B		OUT10	ALM4		For details, refer to the operation manual.
12B		OUT11	ALM8		
13B		OUT12	*ALML	Minor failure alarm	This signal is output when a message-level alarm generate
14B		OUT13	NC	-	Not used
15B		OUT14	ZONE1	Zone signal 1	This signal turns ON when the current position of the actuator falls within the parameter-set range.
16B		OUT15	ZONE2	Zone signal 2	
17B	Pulse input		NP	Differential pulse-train input (+)	Differential pulses are input from the host. Up to 200 kpps can be input.
18B			/NP	Differential pulse-train input (-)	
19B	0V		N	Power supply	I/O power supply 0 V
20B	0V		N	Power supply	I/O power supply 0 V

(Note) The number of encoder pulses is 800 with all RCP4 series models. For details, refer to the operation manual.

Field Network Specification: Explanation of Operation Modes

If the PCON-CA is controlled via a field network, you can select one of the following five modes to operate the actuator. Take note that the required data areas on the PLC side vary depending on the mode.

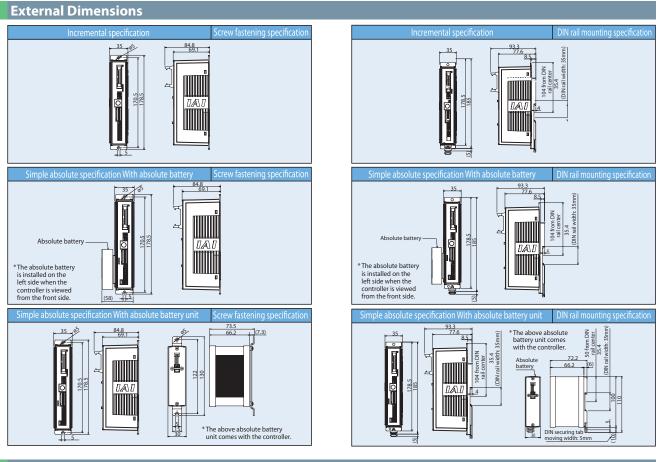
Explanation of Modes

	Mode	Description
0	Remote I/O mode	In this mode, the actuator is operated by controlling the ON/OFF of bits via the network, just like with the PIO specification. The number of positioning points and functions vary with each of the operation patterns (PIO patterns) that can be set by the controller's parameter.
1	Position/simple direct numerical mode	The target position is specified by directly entering a value, while other operating conditions (speed, acceleration, etc.) are set by specifying the desired position number corresponding to the desired operating conditions already input to the position data table.
2	Half direct numerical mode	The actuator is operated by specifying the speed, acceleration/deceleration and push current, in addition to the target position, by directly entering values.
3	Full direct numerical mode	The actuator is operated by specifying the target position, speed, acceleration/deceleration, push current control value, etc., by directly entering values. The current position, current speed, command current, etc., can also be read.
4	Remote I/O mode 2	Same as the above remote I/O mode, plus the current position read function and command current read function.

Required Data Size for Each Network

		DeviceNet	CC-Link	PROFIBUS-DP	CompoNet	EtherCAT	EtherNet/IP	PROFINET
0	Remote I/O mode	1CH	1 station	2 bytes	2 bytes	2 bytes	2 bytes	2 bytes
1	Position/simple direct numerical mode	4CH	1 station	8 bytes	8 bytes	8 bytes	8 bytes	8 bytes
2	Half direct numerical mode	8CH	2 stations	16 bytes	16 bytes	16 bytes	16 bytes	16 bytes
3	Full direct numerical mode	16CH	4 stations	32 bytes	32 bytes	32 bytes	32 bytes	32 bytes
4	Remote I/O mode 2	6CH	1 station	12 bytes	12 bytes	12 bytes	12 bytes	12 bytes

* No required data size is set for MECHATROLINK I and II.


List of Functions by Operation Mode

	Remote I/O mode	Position/simple direct numerical mode	Half direct numerical mode	Full direct numerical mode	Remote I/O mode 2
Number of positioning points	512 points	768 points	Not limited	Not limited	512 points
Operation by direct position data specification	_	0	0	0	_
Direct speed/acceleration specification	_	—	0	0	_
Push-motion operation	0	0	0	0	0
Current position read	_	0	0	0	0
Current speed read	_	_	0	0	_
Operation by position number specification	0	0	_	_	0
Completed position number read	0	0	—	—	0

* O indicates that the operation is supported, and "--" indicates that it is not supported.

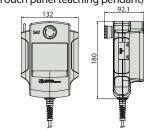
(Note 1) Take note that the MECHATROLINK specification does not support the full direct numerical mode.

PCON controller

Specification Table

		Items		Description			
		Item		PCON-CA			
Number of cont	trolled a	xes		1 axis			
Power supply ve	oltage			24VDC ± 10%			
Load capacity	RCP2	Motor	20P, 28P, 20SP, 28SP	1A max.			
(Current	RCP2	type	35P, 42P, 56P	2.2A max.			
consumption of controlled axes	ncr5	type	60P, 86P				
included)	RCP4	Motor	42P. 56P	High-output setting disabled: 2.0A max.			
(Note 1)	nCF4	type	42r, 30r	High-output setting enabled: 3.5A rated / 4.2 max.			
		gnetic bral	(for actuators with brake)	24VDC ± 10%, 0.15A (max.)			
Rush current (N	ote 1)			8.3A			
Momentary pow		re resista	ance	500µs max.			
Applicable enco				Incremental encoder of 800 pulses/rev in resolution			
Actuator cable	length			20m max.			
External interfa	CA.		PIO specification	Dedicated 24-VDC signal input/output (NPN or PNP selected) Up to 16 input points, up to 16 output points / Cable length: 10m max.			
			Field network specification	DeviceNet, CC-Link, PROFIBUS, CompoNET, MECHATROLINK, EtherCAT, EtherNet/IP, PROFINET			
	Data setting/input method			PC software, touch-panel teaching pendant			
Data retention				Position data and parameters are saved in the non-volatile memory (The memory can be written an unlimited number of times.)			
Operation mod	es			Positioner mode / Pulse-train control mode (Selectable by parameter setting)			
Number of posi	tions in	position	er mode	Up to 512 points for the positioner type, up to 768 points for the network type (Note) The number of positioning points varies depending on the PIO pattern selected.			
				Differential method (line driver method): 200kpps max. / Cable length: 10m max.			
Pulse-train inte	rfaca		Input pulse	Open collector method: Not supported * If the host uses open-collector output, convert the open-collector pulses todifferential pulses using the AK-04 (available as an option).			
Puise-train inter	nace		Command pulse magnification	1/50 < A/B < 50/1			
			(electronic gear ratio: A/B)	Setting range of A and B (set by parameters): 1 to 4096			
			Feedback pulse output	None			
Isolation resist				500-VDC 10 MΩ or more			
Electric shock p	rotectio	n mecha	nism	Class I basic isolation			
Mass			ecification	Screw fastening type: 250g or less DIN rail mounting type: 285g or less			
(Note 3) Simple absolute specification (190g of battery weight included)			Screw fastening type: 450g or less DIN rail mounting type: 485g or less				
Cooling method			Natural air cooling				
			ting temperature	0 to 40°C			
Environment			ting humidity	85%RH or less (non-condensing)			
LIWIOIIIIEIIt	Operat	ing amb	ience	Not exposed to corrosive gases			
	Protect	tion deg	ree	IP20			

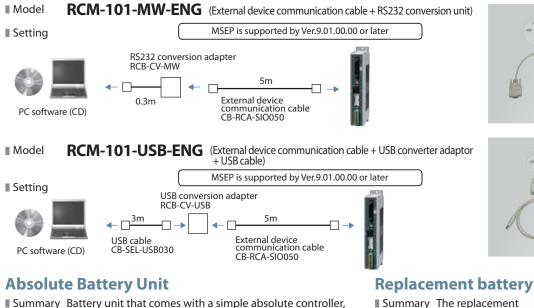

(Note 1) The value increases by 0.3 Å for the field network specification. (Note 2) After the power is turned on, rush current will flow for approx. 5msec (at 40°C). Take note that the rush current varies depending on the impedance of the power-supply line. (Note 3) The value increases by 30g for the field network specification.



Option

Teaching pendant

Summary Teaching device for positioning input, test operation, and monitoring.



Specification

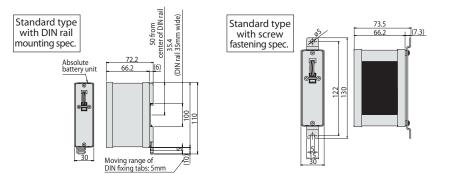
Specification							
ltem	CON-PTA-C-ENG						
Data input	0						
Actuator motion	0						
Operating ambient temperature/humidity	Temperature 0 to 40°C, humidity 85% RH or less						
Operating environment	Free from corrosive gas and especially, considerably dusty condition						
Protection degree	IP40						
Weight	Approximately 570g						
Cable length	5m						
Display	65536 color White LED back light						

PC software (Windows only) * For the 8-axis controller MSEP with field network specification, the PC software is required.

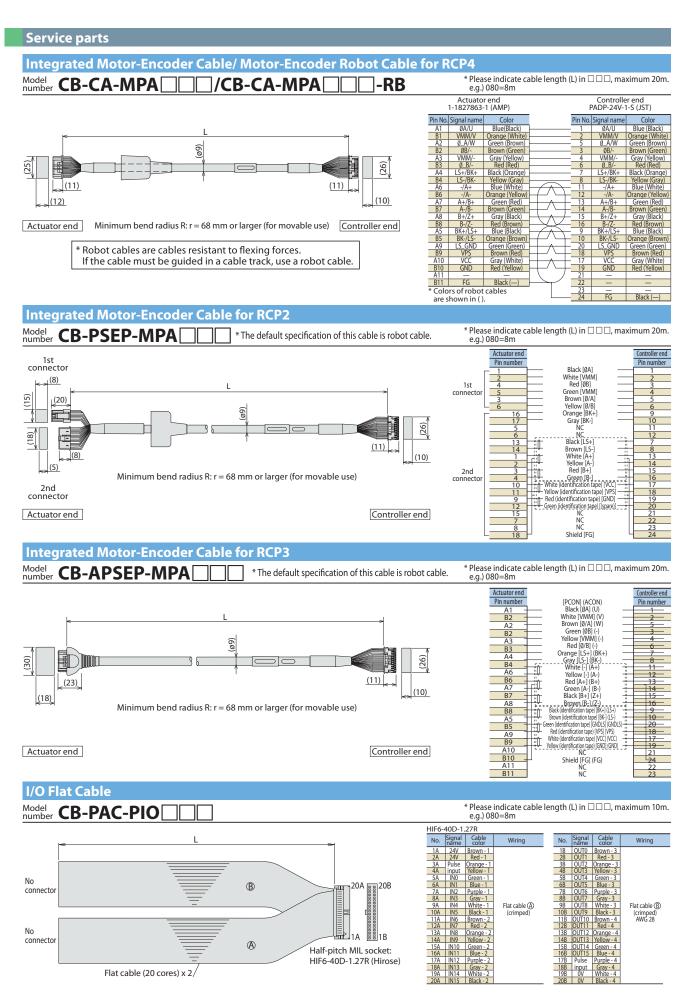
Summary A startup support software for inputting positions, performing test runs, and monitoring. With enhancements for adjustment functions, the startup time is shortened.

Summary Battery unit that comes with a simple absolute controller, used to back up the current controller position. Model

SEP-ABU(-W)* (DIN rail mounting specification) SEP-ABUS(-W)* (screw fastening specification) * SEP-ABU-W/SEP-ABUS-W: Dust-proof type


battery for the absolute data backup battery box.

AB-7


Model

Specifications

Item	Specification			
Ambient operating temperature, humidity	0 to 40°C (desirably around 20°C), 95% RH or below (non-condensing)			
Operating ambience	Free from corrosive gases			
Absolute battery	Model number: AB-7 (Ni-MH battery / Life: Approx. 3 years)			
Controller/absolute battery unit link cable	Model number: CB-APSEP-AB005 (Length: 0.5m)			
Mass	Standard type: Approx. 230g / Dust-proof type (IP53): Approx. 260g			

PCON controller

ROBO Cylinder® RCP4-SA3/RA3

www.intelligentactuator.com

SA3/RA3 Types with body width 32mm added to RCP4 Series

RCP4 Series

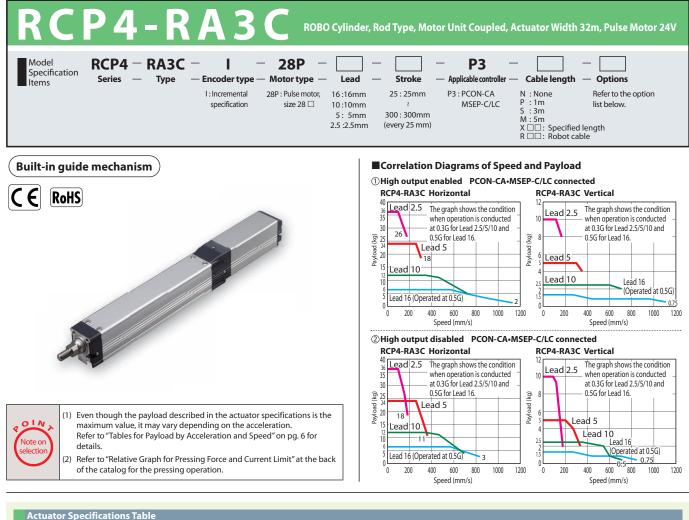
Series	Specification	Feature	Туре	External view	Actuator width	Stroke (mm)	Ball screw lead (mm)	Maximum speed (mm/s)	Maximum p Horizontal	oayload (kg) Vertical					
		NE	Ŵ		_		6	420	3	1.5					
			SA3C	- 1		25 ~ 300	4	280	5	2.5					
				w.	32mm		2	140	8	3.5					
					5211111		20	1440	6.5	1					
			C A - C				12	900	9	2.5					
			SA5C				6	450	18	6					
		Slider			52mm		3	225	20	12					
		Туре					20	1440	10	1					
			SA6C	2		50 ~ 800	12	900	15	2.5					
			SAOC			50 000	6	450	25	6					
					58mm		3	225	25	12					
	Motor						24	1200	20	3					
	Straight		SA7C	5	6 0		16	980	40	8					
	Specification		5/1/ 0				8	490	45	16					
				-	73mm		4	245	45	25					
		NE						1120 700	6 12	1.5 2.5					
			RA3C	1	0	25 ~ 300	10 5	350	24	2.5					
				4	32mm		2.5	175	36	10					
		Rod			J211111		2.5	800	6	1.5					
		Туре		N			12	700	25	4					
		(Radial)	RA5C	2		50 ~ 400	6	450	40	10					
RCP4		(Cylinder)		244	52mm		3	225	60	20					
nCF4			DACC			50 ~ 500	24	800	20	3					
				2			16	700	50	8					
			RA6C				8	420	60	18					
					61mm		4	210	80	28					
						20	1440	6.5	1						
			SA5R				12	900	9	2.5					
			JAJA				6	450	18	6					
					52mm		3	225	20	12					
		Slider					20	1280	10	1					
			SA6R			50 ~ 800	12	900	15	2.5					
		Туре			E 9 mm		6 3	450 225	25 25	6 12					
					58mm		24	1000	25	3					
	Side-mounted						16	840	40	8					
	Motor							SA7R	SA	0 0		8	490	45	16
	Specification				73mm		4	210	45	25					
							20	800	6	1.5					
				2	0	50 400	12	700	25	4					
		Rod	RA5R	3		50 ~ 400	6	450	40	10					
		Туре			52mm		3	225	60	20					
		(Radial (Cylinder)					24	800	20	3					
		(Cylinder)	RA6R			50 ~ 500	16	560	50	8					
			inton				8	420	60	18					
					61mm		4	175	80	28					
							20	1440	6.5	1					
			SA5C	-1			12 6	900 450	9 18	2.5 6					
				No.	52mm		3	225	20	12					
					JZIIIII		20	1440	10	12					
DCD	Cleanroom	Slider		1			12	900	15	2.5					
RCP4CR	Specification	Туре	SA6C	C'ar		50 ~ 800	6	450	25	6					
	speamention	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			58mm		3	225	25	12					
							24	1200	20	3					
			C A 7C	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			16	980	40	8					
			SA7C	Cal			8	980 490	40 45	8					

• The horizontal payload of the Rod Type described above is that when an external guide is used. • Refer to the "ROBO Cylinder General Catalog 2014" for the RCP4 Series.

RCP4/RCP5series

RCP5 Series

Battery-less Absolute Encoder Installed as Standard


Series	Specification	Feature	Turne	External	Actuator	Stroke	Ball screw	Maximum	Maximum p	oayload (kg)
Series	specification	reature	Туре	view	width	(mm)	lead (mm)	speed (mm/s)	Horizontal	Vertical
						50 ~ 500	16	1260	4	1
			SA4C	1			10	785	10	2.25
			JAAC			50 500	5	390	12	4.5
					40mm		2.5	195	12	9
				~			20	1440<1280>	10	1
		Slider	SA6C	3		50 ~ 800	12	900	15	2.5
		Туре					6	450 225	25 25	6 16
					58mm		24	1200	20	3
				3			16	980<840>	40	8
			SA7C	9		50 ~ 800	8	490	45	16
					73mm		4	245<210>	45	25
					, 311111		16	1120<840>	6	1.5
				<u>s</u>	661	60 ~ 410	10	700	15	2.5
	Motor		RA4C				5	350	28	5
	Motor Straight Specification				40mm		2.5	175	40	10
				7		65 ~ 415	20	800	6	1.5
	specification		RA6C				12	700	25	4
			RAOL	3			6	450	40	10
RCP5					58mm		3	225	60	20
		Rod		2			24	800<600>	20	3
		Туре	RA7C			70 ~ 520	16	700<560>	50	8
		(Radial Cylinder)					8	420	60	18
		(Cynnder y		•••	73mm		4	210	80	28
						50 ~ 700	20	600<450>	30	5
			RA8C				10	300<250>	60	40
				A	88mm		5	150	100	70
					60 00		10	250<167>	80	80
			RA10C		900	50 ~ 800	5	125	150	100
				3	108mm		2.5	63	300	150
					10000		20	400	30	5
			RA8R	1	•00•	50 ~ 700	10	200	60	40
	Side-mounted	Rod Type			88mm		5	100	100	70
	Motor Specification	(Radial)			60 00		10	200<140>	80	80
	specification	(Cylinder)	RA10R	R	000	50 ~ 800	5	100	150	100
					108mm		2.5	50	300	150

• Refer to the individual catalog for the RCP5 Series.

RCP4-SA3/RA3 Applicable Controllers

Name	External view	Model number	Features	Max. number of positioning points	Input power	Power supply capacity	Standard price	Reference page
Positioner type	M	PCON-CA-28P①-NP-2-0 PCON-CA-28P①-PN-2-0	Equipped with a high-output driver Positioner type based on PIO control	512 points			—	
Pulse-train type		PCON-CA-28PWAI-PLN-2-0 PCON-CA-28PWAI-PLP-2-0	Equipped with a high-output driver Pulse-train input type	_		Refer to	—	Refer to
Field network type		PCON-CA-28P①-①-0-0	Equipped with a high-output driver Applicable for 7 types of principal field networks	768 points	24V DC	.,	—	ROBO Cylinder
Positioner Multiple Axes Specification PIO type	Y XXXX	MSEP-①-①-~-NP-2-0 MSEP-①-①-~-PN-2-0	Positioner type with PIO control available to connect 8 axes at maximum	3 points		General Catalog		General Catalog
Positioner Multiple Axes Specification network type	iiii -	MSEP- (1)- (1)-0-0 Positioner type applicable for field network available to connect 8 axes at maximum points			_			

*The encoder type comes in ①. Incremental Type is "WAI" and Simple Absolute is "SA". *Either Type C or LC comes in ①. 6 axes are available to connect at the maximum if LC. *The number of axes (1 to 8) comes in ①. *The symbol (DV, CC, PR, CN, EC or EP) for the field network types comes in ①.

Leads and Payloads										
Model number	Lead	Maximun Horizontal (kg)	n payload	Maximum push force (N)	Stroke (mm)					
RCP4-RA3C-I-28P-16-①-P3-②-③	(mm) 16	6	1.5	36	(IIIII)					
RCP4-RA3C-I-28P-10- ① -P3- ② - ③	10	12	2.5	57	25 ~ 300					
RCP4-RA3C-I-28P-5- ① -P3- ② - ③	5	24	5	114	(every 25 mm)					
RCP4-RA3C-I-28P-2.5- ① -P3- ② - ③	2.5	36	10	229						

Stroke and	(unit: mm/s)	
Lead (mm)	High-Output Setting	25 ~ 300 (every 25 mm)
16	Enabled	1120
10	Disabled	840
10	Enabled	700
10	Disabled	700
5	Enabled	350
5	Disabled	550
2.5	Enabled	175
2.0	Disabled	1/5

Legend ① Stroke ② Cable length ③ Options

① Stroke List (Standard price)

Stroke (mm)	Standard price	Stroke (mm)	Standard price
25	_	175	_
50	—	200	_
75	-	225	-
100	—	250	—
125	—	275	-
150	—	300	—

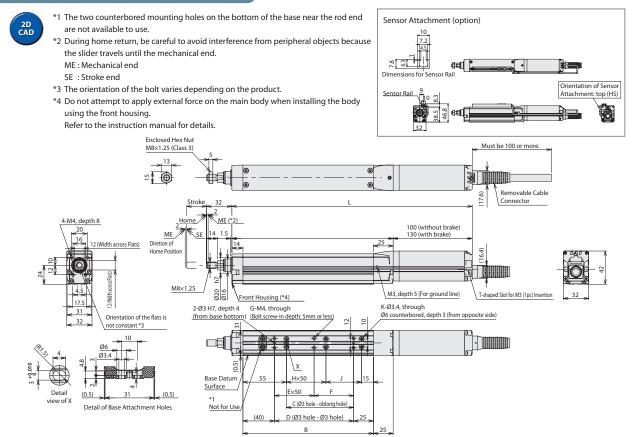
🖉 Cable Len	gth (Standard price)	
Type	Cable symbol	Standard price
Type	· · · · · ·	Standard price
	P (1m)	_
Standard type	S (3m)	—
	M (5m)	—
	X06 (6m) ~ X10 (10m)	—
Special length	X11 (11m) ~ X15 (15m)	—
	X16 (16m) ~ X20 (20m)	_

R01 (1m) ~ R03 (3m) R04 (4m) ~ R05 (5m)

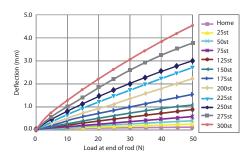
~ R10 (10m) **R11** (11m) ~ **R15** (15m) R16 (16m) ~ R20 (20m)

③ Option List (Standard price)									
Name	Option code	Reference page	Standard price						
Brake	В	Refer to ROBO	_						
Home-Position Check Sensor (top)	HS	Cylinder General	_						
Non-motor end specification	NM	Catalog	Free						

Actuator Specifications


ltem	Description
Drive system	Ball screw Ø8mm rolled C10
Positioning repeatability	±0.02mm
Lost motion	0.1mm or less
Rod	Ø16mm Aluminum
Rod non-rotation precision(*1)	±0 deg
Allowable rod load mass	Refer to reference at the back
Rod tip overhang distance	100mm or less
Ambient operating temperature, humidity	0 to 40°C, 85% RH or less (Non-condensing)

R06 (6m)


(*1) Accuracy of rod displacement in rotating direction when no load is received.

Robot Cable

CAD drawings can be downloaded from the website. www.intelligentactuator.com

Rod Deflection (reference)

Dimensions and Mass by Stroke

	Stroke	25	50	75	100	125	150	175	200	225	250	275	300
	without brake	229	254	279	304	329	354	379	404	429	454	479	504
L	with brake	259	284	309	334	359	384	409	434	459	484	509	534
	A	129	154	179	204	229	254	279	304	329	354	379	404
	В	90	115	140	165	190	215	240	265	290	315	340	365
	С	10	35	60	85	110	135	160	185	210	235	260	285
	D	25	50	75	100	125	150	175	200	225	250	275	300
	E	0	0	0	1	1	2	2	3	3	4	4	5
F		25	50	75	50	75	50	75	50	75	50	75	50
G		4	4	4	6	6	8	8	10	10	12	12	14
Н		0	0	0	1	1	2	2	3	3	4	4	5
	J	20	45	70	45	70	45	70	45	70	45	70	45
	К	4	4	4	6	6	8	8	10	10	12	12	14
Allowable stati	c load at end of rod(N)	38.8	33.5	29.5	26.3	23.7	21.6	19.8	18.2	16.9	15.7	14.7	13.8
Allowable dynamic	Load offset 0mm	19.4	16.6	14.2	12.2	10.7	9.5	8.5	7.7	7.0	6.4	5.8	5.4
load at end of rod (N)	Load offset 100mm	9.1	9.4	8.9	8.3	7.7	7.1	6.6	6.1	5.6	5.2	4.9	4.5
Allowable static to	orque at end of rod (N•m)	3.9	3.4	3.0	2.7	2.4	2.2	2.0	1.9	1.7	1.6	1.5	1.4
Allowable dynamic	torque at end of rod (N•m)	0.9	0.9	0.9	0.8	0.8	0.7	0.7	0.6	0.6	0.5	0.5	0.5
Mass	without brake	0.59	0.64	0.69	0.73	0.78	0.83	0.88	0.93	0.98	1.02	1.07	1.12
(kg)	with brake	0.68	0.73	0.78	0.82	0.87	0.92	0.97	1.02	1.07	1.11	1.16	1.21

Tables for Payload by Acceleration and Speed

High o	ligh output enabled Lead 16													
Orientation		Horizontal Vertical												
Speed			A	Accele	eratio	n								
(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5						
0	6	6	6	5	3.5	1.5	1.5	1.5						
140	6	6	6	5	3.5	1.5	1.5	1.5						
280	6	6	6	5	3.5	1.5	1.5	1.5						
420	6	6	6	5	3.5	1	1	1						
560		6	6	5	3.5		1	1						
700		5.5	5	4	2.5		1	1						
840		4.5	3.5	3	2		1	1						
980			2.5	2	1.5			1						
1120			2	1.5	1			0.75						

High output disabled Lead 16

Orientation		Ho	orizon	tal		\	al					
Speed		Acceleration										
(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5				
0	6	6	6	5	3.5	1.5	1.5	1.5				
140	6	6	6	5	3.5	1.5	1.5	1.5				
280	6	6	6	5	3.5	1.5	1.5	1.5				
420	6	6	6	5	3.5	1	1	1				
560		6	5.5	4.5	3		1	1				
700		5	4.5	3.5	2		1	1				
840		4	3	2.5	1.5		1	0.75				
980												
1120												

Horizontal Vertical Speed (mm/s Acceleration 0.1 0.3 0.5 0.7 1 0.1 0.3 0.5
 12
 12
 11
 9
 6

 12
 12
 11
 9
 6

 12
 12
 11
 9
 6

 12
 12
 11
 9
 6
 2.5 | 2.5 2.5 2.5 2.5 260
 12
 12
 11
 9
 6

 12
 11
 9
 7
 6
 350 435 2.5 525 12 9 55 4 7 5 610 4 3

High output disabled Lead 10

High output enabled Lead 10

	· ·											
)rientation		Ho	orizon	tal		V	ertica	al				
Speed		Acceleration										
(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5				
0	12	12	11	9	6	2.5	2.5	2.5				
85	12	12	11	9	6	2.5	2.5	2.5				
175	12	12	11	9	6	2.5	2.5	2.5				
260	12	12	11	9	6	2.5	2.5	2.5				
350	12	12	10	8	5.5	2.5	2.5	2.5				
435	12	11	8	6	5	2.25	2.25	2.25				
525	11	8	6	4	3	2	2	2				
610		6	4	3	2		1	1				
700		3	2.5	1.5	1		0.5	0.5				

High output enabled Lead 5

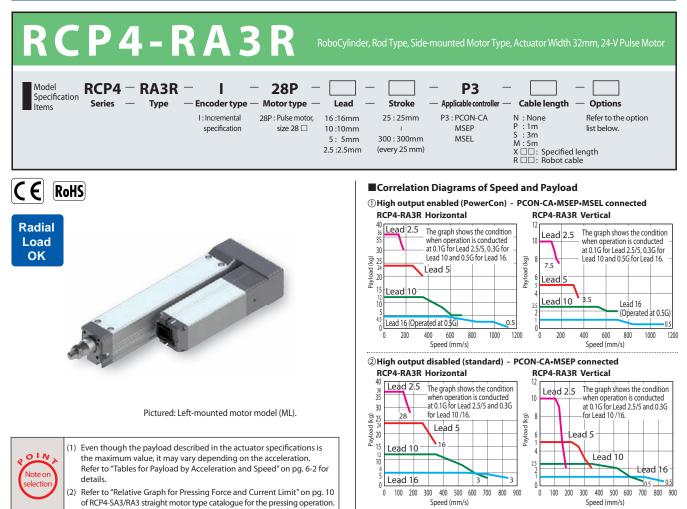
Orientation		Ho	orizon		V	/ertica	al				
Speed		Acceleration									
(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5			
0	24	24	22	18	12	5	5	5			
40	24	24	22	18	12	5	5	5			
85	24	24	22	18	12	5	5	5			
130	24	24	22	18	12	5	5	5			
175	24	24	22	18	12	5	5	5			
215	24	24	22	18	12	5	5	5			
260	24	22	20	16	10	5	5	5			
305	22	20	18	14	7	5	5	4.5			
350	20	18	16	12	5	5	4	3.5			

High output disabled Lead 5

	_					_		_			
Orientation		Ho	orizon		V	'ertica	al				
Speed		Acceleration									
(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5			
0	24	24	22	18	12	5	5	5			
40	24	24	22	18	12	5	5	5			
85	24	24	22	18	12	5	5	5			
130	24	24	22	18	12	5	5	5			
175	24	24	22	18	12	5	5	5			
215	24	24	20	16	10	5	5	5			
260	24	20	16	12	7.5	4.5	4.5	4			
305	20	16	12	10	5	3	3	3			
350	16	11	7	6	3	2	2	2			

High output enabled Lead 2.5

Orientation		Ho	orizon		١	/ertica	al					
Speed		Acceleration										
(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5				
0	36	36	36	30	20	10	10	10				
20	36	36	36	30	20	10	10	10				
40	36	36	36	30	20	10	10	10				
65	36	36	36	30	20	10	10	10				
85	36	36	36	30	20	10	10	10				
105	36	36	33	26	20	10	10	10				
130	36	33	28	22	16	10	10	9				
150	33	30	24	18	14	10	9	8				
175	30	26	20	14	10	9	8	7				


High output disabled Lead 2.5

Orientation		Horizontal Vertical								
Speed			A	Accele	ratio	n				
(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5		
0	36	36	36	30	20	10	10	10		
20	36	36	36	30	20	10	10	10		
40	36	36	36	30	20	10	10	10		
65	36	36	36	30	20	10	10	10		
85	36	36	36	30	20	10	10	10		
105	36	36	30	22	18	10	10	10		
130	36	30	24	18	14	9	9	8		
150	32	26	20	14	12	5	5	5		
175	28	18	16	12	8	2	2	2		

Note) MSEP-C/LC is available for high output only if "High-Output Specification" is selected in the options.

6

RCP4 RoboCylinder

Actuator Specifications	Actuator Specifications													
Leads and Payloads Stroke and Max. Speed (unit: mi														
Model number	Lead (mm)	Maximun Horizontal (kg)	n payload Vertical (kg)	Maximum push force (N)	Stroke (mm)		Lead (mm)	High-Output Setting	25 ~ 300 (every 25mm)					
RCP4-RA3R-I-28P-16- ① -P3- ② - ③	16	5	1	36			16	Enabled	1120					
								Disabled	840					
RCP4-RA3R-I-28P-10- ① -P3- ② - ③	10	12	2.5	57			10	Enabled	700					
NCF4-NASh-1-20F-10- [[]-F3-[[]-[]]-	10		215	57	25 ~ 300			Disabled						
RCP4-RA3R-I-28P-5- ① -P3- ② - ③	5	24	5	114	(every 25mm)		5	Enabled	350					
RCP4-RA3R-I-28P-5- (U-P3- (U-3)	J	24		114				Disabled	550					
	2.5	36	10	229			2.5	Enabled	175					
RCP4-RA3R-I-28P-2.5- ① -P3- ② - ③	2.5	50	10	229			2.5	Disabled	175					

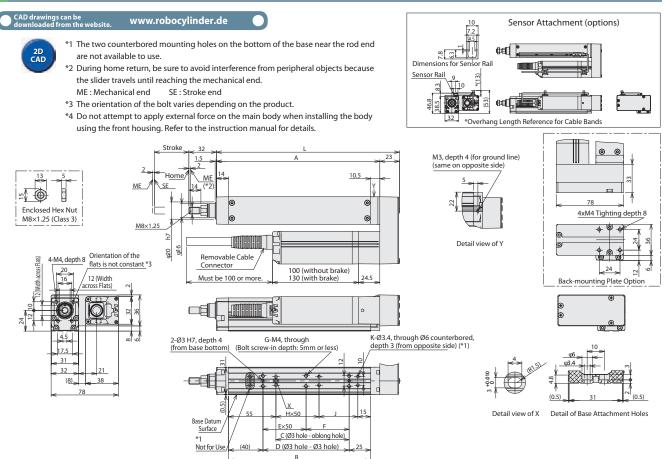
Legend ① Stroke ② Cable length ③ Options

Cable Lengtl	1
Туре	Cable symbol
	P (1m)
Standard type	S (3m)
	M (5m)
	X06 (6m) ~ X10 (10m)
Special length	X11 (11m) ~ X15 (15m)
	X16 (16m) ~ X20 (20m)
	R01 (1m) ~ R03 (3m)
	R04 (4m) ~ R05 (5m)
Robot cable	R06 (6m) ~ R10 (10m)
	R11 (11m) ~ R15 (15m)
	R16 (16m) ~ R20 (20m)

Options			
Name	Option code	Reference page	
Brake	В		_
Left-mounted motor	ML	Refer to	_
Right-mounted motor	MR	RoboCylinder	_
Home-position check sensor (top)	HS	General Catalog	_
Non-motor end specification	NM]	—
Back-mounting plate	RP		—

Item	Description							
Drive system	Ball screw Ø8mm rolled C10							
Positioning repeatability	±0.02mm							
Lost motion	0.1mm or less							
Rod	Ø16mm Aluminum							
Rod non-rotation precision(*1)	±0 deg							
Allowable rod load mass	Refer to reference at the back							
Rod tip overhang distance 100mm or less								
Ambient operating temperature, humidity 0 to 40°C, 85% RH or less (Non-condensing)								

Offset distance at end of rod (100mm or less)



RCP4 RoboCylinder

RCP4-RA3R Rod Deflection (reference)

5.0

4.0

3.0 Deflection (I

1.0

0.0

0

10

20

(mm)

		Stroke	25	50	75	100	125	150	175	200	225	250	275	300
	1	Standard	137.5	162.5	187.5	212.5	237.5	262.5	287.5	312.5	337.5	362.5	387.5	412.5
- Home	L	with backside holes	147.5	172.5	197.5	222.5	247.5	272.5	297.5	322.5	347.5	372.5	397.5	422.5
25st		A	114.5	139.5	164.5	189.5	214.5	239.5	264.5	289.5	314.5	339.5	364.5	389.5
		В	90	115	140	165	190	215	240	265	290	315	340	365
		С	10	35	60	85	110	135	160	185	210	235	260	285
← 150st		D	25	50	75	100	125	150	175	200	225	250	275	300
→ 175st		E F G				1	1	2	2	3	3	4	4	5
→ 200st						50	75	50	75	50	75	50	75	50
 225st						6	6	8	8	10	10	12	12	14
← 250st		Н	0	0	0	1	1	2	2	3	3	4	4	5
- 275st		J	20	45	70	45	70	45	70	45	70	45	70	45
300st		K	4	4	4	6	6	8	8	10	10	12	12	14
	Allowable stati	c load at end of rod(N)	38.8	33.5	29.5	26.3	23.7	21.6	19.8	18.2	16.9	15.7	14.7	13.8
	Allowable dynamic	Load offset 0mm	19.4	16.6	14.2	12.2	10.7	9.5	8.5	7.7	7.0	6.4	5.8	5.4
	load at end of rod (N)	Load offset 100mm	9.1	9.4	8.9	8.3	7.7	7.1	6.6	6.1	5.6	5.2	4.9	4.5
	Allowable static to	orque at end of rod (N•m)	3.9	3.4	3.0	2.7	2.4	2.2	2.0	1.9	1.7	1.6	1.5	1.4
	Allowable dynamic	0.9	0.9	0.9	0.8	0.8	0.7	0.7	0.6	0.6	0.5	0.5	0.5	
	Mass	without brake	0.71	0.76	0.81	0.85	0.90	0.95	1.00	1.05	1.10	1.14	1.19	1.24
	(kg)	with brake	0.80	0.85	0.90	0.94	0.99	1.04	1.09	1.14	1.19	1.23	1.28	1.33
										-				

Tables for Payload by Acceleration and Speed

High o	utput enabled (PowerCon spec.) Lead 16 High output enabled (PowerCon spec.) Lead 10									High output enabled (PowerCon spec.) Lead 5										5 High output enabled (PowerCon spec.) Lead 2.5																	
Orientation	1	H	lorizo	ntal		1	Vertic	al	Orientati	in	Ho	orizon	tal		١	/ertica	al		Orientation		Но	orizon	ital		1	/ertica	al	0	rientation		Но	rizon	tal		V	ertica	1
Speed				Accel	eratio	n			Spee	1		A	Accele	ratio	n				Speed			A	Accel	eratio	n			5	peed			A	ccele	ratio	n		
(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5	(mm/:	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5		(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5		(mm/s)	0.1	0.3	0.5	0.7	1	0.1	0.3	0.5
0	5	5	4.5	3	2.5	1	1	1	0	12	12	10	9	6	2.5	2.5	2.5		0	24	24	22	18	12	5	5	5		0	36	36	36	30	20	10	10	10
140	5	5	4.5	3	2.5	1	1	1	85	12	12	10	9	6	2.5	2.5	2.5		40	24	24	22	18	12	5	5	5		20	36	36	36	30	20	10	10	10
280	5	5	4.5	3	2	1	1	1	175	12	12	10	9	6	2.5	2.5	2.5		85	24	24	22	18	12	5	5	5		40	36	36	36	30	20	10	10	10
420	5	5	4.5	3	2	1	1	1	260	12	12	10	9	5	2.5	2.5	2.5		130	24	24	22	18	12	5	5	5		65	36	36	36	30	20	10	10	10
560		5	4.5	2.5	2		1	1	350	12	12	10	8	5	2.5	2.5	2.5		175	24	24	22	18	12	5	5	5		85	36	36	36	30	20	10	10	10
700		4.5		2	1.5		1	1	435	12	10	8	6	4	2.5	2.5	2.5		215	24	24	22	18	12	5	5	5		105	36	36	33	26	20	10	10	10
840		3	2.5	1	0.5		0.5	0.5	525	12	8	6	3	2	2.5	2.5	2		260	24	22	20	16	10	5	5	5		130	36	33	28	22	16	9	9	8
980			2.5	1	0.5			0.5	610		5	2	2	2		2	1.5		305	22	20	16	12	7	5	4	4		150	33	30	24	18	14	8	8	7
1120			0.5	0.5	0.5			0.5	700		5	2	2	2		2	1.5		350	20	16	10	8	5	3.5	3	3		175	30	26	20	14	10	7.5	7	6
High o	<u>.</u>	_			dard	<u>.</u>			High	<u> </u>				lard	<u> </u>	-		1	High ou	Itput				dard	<u>. </u>	-		_	igh ou	tput				dard	<u> </u>		
Orientation	_	F	lorizo				Vertic	al	Orientati		Ho	prizon				/ertica	al		Orientation	<u> </u>	HC	prizon				/ertica	al		rientation		Ho	rizon				ertica	<u> </u>
Speed (mm/s)					eratio		0.2	0.5	Spee (mm/		102		Accele	ratio		0.2	0.5		Speed (mm/s)	0.1	0.2			eratio		0.2	0.5		peed mm/s)	0.1	0.2			ratio		0.2	0.5
(1111/5)	0.1			0.7	2.5	0.1	0.3	0.5	· · ·	0.1	0.3	0.5	0.7		0.1		0.5		1 1.7	0.1	0.3		0.7	12	0.1	0.3	0.5				0.3	0.5	0.7	20		0.3	
140	5	5	4.5	3	2.5	1	1	1	0	12	12	10	9	6	2.5	2.5	2.5		0 40	24	24	22	18	12	5	5	5		0 20	36	36	36	30 30	20	10	10	10
280	5	-	4.5	3		1	1	1	175	12	12	10	9	6	2.5	2.5	2.5			24 24		22	18	12	5	5	5			36 36	36 36	36	30	20	10	10	10 10
420	5	5	4.5	3	2	1	1	1		12	12		9	6	2.5				85	24	24	22	18	_	5	5	5		40						10	10	
560	2	5	3.5	2.5	2		1	1	260	12	12	10 10	9 8	5	2.5	2.5	2.5		130	24		22	18	12	5	5	5		65	36 36	36 36	36 36	30 30	20 20	10	10	10 10
700		4.5		2.5	1.5		1	1	435	12	10	8	6	5	2.25	2.25	2.5		215	24	24	22	16	10	5	5	5		85 105	36	36	30	22	18	10	10	10
840		4.5	2.5	1	0.5		0.5	0.5	525	11	8	6	3	2	2.23	2.23	2.23		215	24	24	16	12	7.5	4.5	4.5	4		130	36	30	24	18	14	9	9	8
040		1 2	12.3	1 1	10.5	1	10.5	10.5	525		10	0	د ا	2	2	1 4	1 4		200	24	20	1.0	114	1	1.2	1.7			150	50	50	4.4	10	1.44	<u> </u>		0

(Note) MSEP is available for high output only if "High-Output Specification" (PowerCon) is selected in the options.

525 610

50

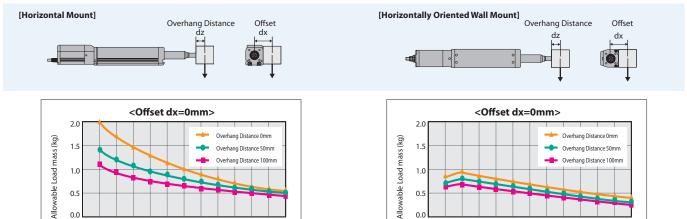
40

30 Load at end of rod (N)

980

20 16 12 10

www.intelligentactuator.com


Criteria for Selection

Document for Selection of Radial Cylinder Allowable Load

Because the Radial Cylinder is equipped with a built-in guide structure, a certain amount of load can be applied to the rod even without an external guide. Refer to the graphs below for the allowable load mass.

Please note that it is necessary to apply an external guide feature when the operational condition exceeds the allowable load.

Allowable Load Mass in Horizontal Mount

0.0

0

50

100

150

Stroke (mm)

200

250

300

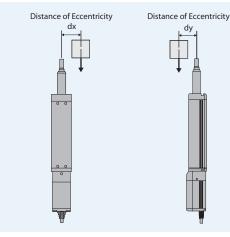
Allowable Load Mass in Vertical Mount

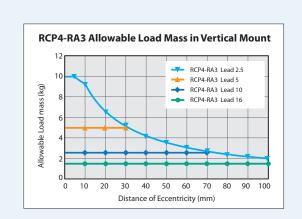
50

100

150

Stroke (mm)


200

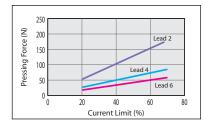

250

300

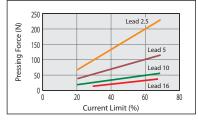
0.0

0

Relative Graph for Pressing Force and Current Limit The pressing force in the pressing operation can be changed with the current limit (20% to 70%) on the controller.


It is necessary to control the pressing force so the reaction moment generated by the pressing force in the pressing operation would not exceed 80% of the rated moment (Ma, Mb) specified in the catalog when pressing operation is conducted with the Slider Type. Refer to the instruction manual for the details of how to select.

Headquarters: 2690 W. 237th Street, Torrance, CA 90505 (800) 736-1712 Chicago Office: 110 East State Parkway, Schaumburg, IL 60173 (800) 944-0333


www.intelligentactuator.com

Atlanta Office: 1220 Kennestone Circle, Suite 108, Marietta, GA 30066 (888) 354-9470

RCP4-SA3 Type

RCP4-RA3 Type

Maintenance Parts

IAI America, Inc.

Model	CB-CAN-MPA	Integrated Motor-Encoder Cable	for
number	CB-CAN-MPA	Integrated Motor-Encoder Robot Cable	RCP4-SA3/RA3
	* Please indicate cable length (L) in $\Box \Box \Box$, maxi	*Refer to the RCP5 individual catalog for details.	

* Please indicate cable length (L) in $\Box\Box\Box$, maximum 20m. e.g.) 080 = 8m

IAI Industrieroboter GmbH

Ober der Röth 4, D-65824 Schwalbach am Taunus, Germany

IAI Robot (Thailand), CO., Ltd. 825 PhairojKijja Tower 12th Floor, Bangna-Trad RD., Bangna, Bangna, Bangkok 10260, Thailand

The information contained in this product brochure may change without prior notice due to product improvements.

