

EL8-EC Series AC Servo Drive

User Manual

Foreword

Thank you for purchasing Leadshine EL8-EC series AC Servo drives. This manual will provide information on the EL8-EC series servo products regarding product safety & specifications, installations & wiring, tuning & problem diagnostics.

Please contact us at tech@leadshine.com if you need further technical support.

Incorrect operation may cause unexpected accident, please read this manual carefully before using product.

- We reserve the right to modify equipment and documentation without prior notice.
- We won't undertake any responsibility with any customer's modification of product and the warranty of product will be canceled at the same time.

Safety Precautions

Please read the safety instructions carefully before using the products and pay attention to the safety signs.

and dandly	g
Danger	Might incur death or serious injury
Caution	Might cause injury to operating personals or damage to equipment
Warning	Might cause damage to equipment
4	High voltage. Might cause electrocution to personals in contact
<u> </u>	Hot surface. Do not touch
	Protective Earth

Safety instructions

- ✓ The design of the product is not to be used in mechanical system which may incur health hazard.
- ✓ Users should be aware of the product safety precautions during design and installations of the equipment to prevent any unwanted accident.

Upon receiving

- ✓ The use of damaged or faulty product(s) is prohibited.
- ✓ Please refer to item checklist. If the labels don't match, please do not install.

Transportation

- ✓ Please provide storage and transportation under protected conditions.
- ✓ Do not stack the products too high up to prevent toppling.
- ✓ The product should be packaged properly during transportation,
- ✓ Do not hold the product by the cable, motor shaft or encoder while transporting it.
- ✓ The product should be protected from external forces and shock.

Installation

Servo drive and Motor:

- ✓ Do not install around combustibles to prevent fire hazard.
- ✓ Avoid vibration and impact.
- ✓ Do not install products that are damaged or incomplete.

Servo drive:

- ✓ Please install in electrical cabinet with sufficient protection from outside elements.
- ✓ Reserve sufficient gap as per the installation guide.
- ✓ Make sure to have good heat sinking.
- ✓ Avoid dust, corrosive gas, conductive object or fluid and combustibles.

Servo Motor:

- ✓ Make sure installation is tight to prevent it from loosening.
- ✓ Prevent fluid from leaking into motor and encoder.
- ✓ Protect motor from impact to avoid damaging encoder.
- ✓ Motor shaft should not bear the load beyond the limits as specified.

Wiring

- ✓ Participate installation personals should have sufficient training in product installation safety.
- ✓ Please power off and wait for 10 minutes to make sure a full discharge of electricity.
- ✓ Servo drive and motor must be connected to ground.
- ✓ Connect the cables only after servo drive motor installed correctly
- ✓ Make sure the wires are properly managed and insulation layer is not torn to prevent electrocution.

- ✓ Wiring must be correctly connected to prevent damage to product(s)
- ✓ Servo motor U, V, W terminal should be connected correctly and NOT connected directly to an AC power supply.
- ✓ Capacitor, inductor or filter shouldn't be installed between servo motor and servo drive.
- ✓ Connecting wires or any non-heat resistant components should be put near to heat sink of the servo drive or motor.
- ✓ The flyback diode which is connected in parallel to output signal DC relay must not be connected in reverse.

Tuning and running

- ✓ Make sure the wirings of servo drive and servo motor are installed and fixed properly before powering on.
- ✓ On the first time tuning of the product, it is recommended to run unloaded until all the parameter settings are confirmed to prevent any damage to the product or machine.

Usage

- ✓ Please install an emergency stop button on machine to stop operation immediately if there is an accident.
- ✓ Please make sure machine is stopped before clearing an alarm.
- ✓ Servo drive must be matched with specified motor.
- ✓ Frequent restart of the servo system might incur damage to the product.
- ✓ Servo drive and motor will be hot to touch shortly after power off. Please be careful.
- ✓ Modification(s) to servo system is prohibited.

Error Handling

- ✓ Please wait for 5 minutes after powering off for the electricity to be fully discharged before uninstalling the cables.
- ✓ Participate maintenance personals should have sufficient training in maintenance and operation of this product series.

- ✓ Please handle the error before clearing an alarm.
- ✓ Keep away from machine after a restart upon alarm. Mechanical axis might suddenly move. Such hazard should be prevented during the utilization of the product.

Model Selection

- ✓ Rated torque of the servo motor should be higher than continuous designated torque when fully loaded.
- ✓ Load inertia ratio of the motor should be lower or equals to recommended value for specified models
- ✓ Servo drive must be matched with specified motor.

Warranty Information

Available for

Leadshine overseas warranty only covers Leadshine AC servo products that are obtained through Leadshine certified sales channel outside of China.

Warranty claim

- All Leadshine AC servo products (Servo drives and motors) overseas enjoy 18-month warranty period.
- Due to unforeseen circumstances in different sales regions around the globe, we recommend users to seek technical support from directed sales channel as any warranty claim or repair services may be required.
- Please be informed that any maintenance/repair work that is outside of the warranty claim conditions might incur some charges and to be confirmed before product(s) is being sent in.
- The duration required for maintenance work to be done is to be confirmed after initial check-up but we reserve the right to prolong the repair duration if needed.
- Discontinued products within warranty period will be replaced with a product of similar specifications.

Steps to warranty claim

- 1. Visit Leadshine global site www.leadshine.com to look for local certified sales channel.
- 2. Contact designated sales channel to check if any fee might incur. May include repair fee, spare part cost or shipping cost.

Circumstances where warranty claim is not available

- Damage/Loss due to occurrence of natural or man-made disaster such as fire, flood or earthquake.
- Installation or wiring error
- If there is any modification done to the product
- Warranty label on products is torn or not existing
- > Not a product bought from Leadshine certified global network of retailers/distributors.

Before warranty claim

- Please backup device parameters before any repair work/warranty claim. Leadshine and Leadshine certified retailers/distributors will not be held responsibilities for any data loss.
- If available, please send product back in original packaging or make sure it is well packaged to prevent any damage to the product during shipping.

Leadshine Technology Co.,Ltd. and its certified sales channel reserved the final right of the interpretation of the warranty information.

TABLE OF CONTENTS

WARRANTY INFORMATION	5
CHAPTER 1 INTRODUCTION	11
1.1 PRODUCT INTRODUCTION	11
1.2 MODEL NUMBER STRUCTURE	12
1.2.1 Servo Drive	12
1.2.2 Servo motor	13
1.3 SERVO DRIVE TECHNICAL SPECIFICATIONS	14
1.4 Servo Drive Ports and Connectors	16
1.5 MOTOR PORTS AND CONNECTORS	18
CHAPTER 2 INSTALLATION & WIRING	19
2.1 Servo Drive Installation	19
2.1.1 Servo drive installation environment	19
2.1.2 Servo drive dimension	19
2.2 Servo Motor Installation	21
2.2.1 Installation conditions	21
2.2.2 Precautions during installation	21
2.3 EL8-EC WIRING DIAGRAM	
2.4 Servo Drive Ports	
2.5 MAIN/CONTROL CIRCUIT POWER SUPPLY X1	
2.5.1 Main power supply cable selection	
2.5.2 Single/Three phase power supply wiring diagram	
2.6 Motor Power Supply X2	
2.6.1 Motor power cable selection (Port X2)	
2.7 HOLDING BRAKE X3	
2.7.1 Holding brake wiring diagram	
2.7.2 Cable selection for motor with holding brake	
2.8 I/O SIGNAL CN1	
2.9 ENCODER #1 (MOTOR) CN2	
2.9.1 Cable selection for I/O signal port CN1 and encoder feedback port CN2	
2.10 ETHERCAT COMMUNICATION PORT CN3/CN4	
2.11 SAFE TORQUE OFF (STO) PORT	
2.12 ENCODER #2 (EXTERNAL) CN7	
2.13 ANALOG AND Z-PHASE OPEN COLLECTOR OUTPUT CN8	
2.14 USB Type-C Tuning Port	
2.15 REGENERATIVE RESISTOR SELECTION AND CONNECTIONS	
2.16 I/O SIGNAL	
2.16.1 Analog input signal	
2.16.2 Common digital input	
2.16.3 Common digital output	
2.16.4 Probe input	
2.16.5 Encoder crossover frequency output	
2.16.6 Digital Input Signal Settings	
2.16.7 Digital Output Signal Settings	
2.17 MEASURES AGAINST ELECTROMAGNETIC INTERFERENCE	
2.17.1 Grounding connection and other anti-interference wiring connections 2.11.2 Using line filter	
CHAPTER 3 PARAMETER	57
3.1 Parameter List	57
3.1.1 Servo drive parameter	
3.1.2 Manufacturer parameter	
3.1.3 Motion parameter starting with object dictionary 6000	
5.1.5 Modern parameter starting with object dictionally 0000	

3.2 Parameter Function	60
3.2.1 [Class 0] Basic Settings	
<u> </u>	
3.2.2 【Class 1】 Gain Adjustments	
3.2.3 [Class 2] Vibration Suppression	
3.2.4 [Class 3] Velocity Control	
3.2.5 【Class 4】 I/O Interface Setting	
3.2.6 【Class 5 】 Extension settings	
3.2.7 【Class 6 】 Other settings	
3.2.8 【Class 7】 Factory settings	
3.3 402 Parameters Function	121
CHAPTER 4 SERVO DRIVE OPERATION	139
4.1 GET STARTED WITH DRIVER OPERATION	139
4.1.1 Checklist before operation	139
4.1.2 Power On	139
4.1.3 Trial Run	139
4.1.4 Motor rotational direction settings	140
4.1.5 Holding Brake Settings	140
4.1.6 Servo Running	141
4.1.7 Servo stop	143
4.2 ELECTRONIC GEAR RATIO	157
4.3 Front Panel	158
4.4 Panel Display and Operation	159
4.4.1 Panel Operation	
4.4.2 Data Monitoring Mode	160
4.5 Parameters saving	172
4.6 Auxiliary function	173
4.7 Front panel warning indicator	178
CHAPTER 5 CONTROL MODE	179
5.1 EL8-EC MOTION CONTROL STEP-BY-STEP	179
	179 180
5.1 EL8-EC MOTION CONTROL STEP-BY-STEP	179 180
5.1 EL8-EC MOTION CONTROL STEP-BY-STEP 5.2 CIA402 STATE MACHINE 5.3 DRIVER CONTROL MODE SETTING 5.3.1 Supported control mode (6502h)	179 180 182 182
5.1 EL8-EC MOTION CONTROL STEP-BY-STEP	179 180 182 182
5.1 EL8-EC MOTION CONTROL STEP-BY-STEP 5.2 CIA402 STATE MACHINE 5.3 DRIVER CONTROL MODE SETTING 5.3.1 Supported control mode (6502h) 5.3.2 Operational mode setting (6060h) and Operational mode display (6061h) 5.4 COMMON FUNCTIONS FOR ALL MODES	179180182182182
5.1 EL8-EC MOTION CONTROL STEP-BY-STEP	
5.1 EL8-EC MOTION CONTROL STEP-BY-STEP 5.2 CIA402 STATE MACHINE 5.3 DRIVER CONTROL MODE SETTING 5.3.1 Supported control mode (6502h) 5.3.2 Operational mode setting (6060h) and Operational mode display (6061h) 5.4 COMMON FUNCTIONS FOR ALL MODES 5.4.1 Digital input setting and status display	
5.1 EL8-EC MOTION CONTROL STEP-BY-STEP 5.2 CIA402 STATE MACHINE 5.3 DRIVER CONTROL MODE SETTING 5.3.1 Supported control mode (6502h) 5.3.2 Operational mode setting (6060h) and Operational mode display (6061h) 5.4 COMMON FUNCTIONS FOR ALL MODES 5.4.1 Digital input setting and status display 5.4.2 Digital output setting and control operation method	
5.1 EL8-EC MOTION CONTROL STEP-BY-STEP 5.2 CIA402 STATE MACHINE 5.3 DRIVER CONTROL MODE SETTING 5.3.1 Supported control mode (6502h) 5.3.2 Operational mode setting (6060h) and Operational mode display (6061h) 5.4 COMMON FUNCTIONS FOR ALL MODES 5.4.1 Digital input setting and status display 5.4.2 Digital output setting and control operation method 5.4.3 Motor Rotational Direction	
5.1 EL8-EC MOTION CONTROL STEP-BY-STEP 5.2 CIA402 STATE MACHINE 5.3 DRIVER CONTROL MODE SETTING 5.3.1 Supported control mode (6502h) 5.3.2 Operational mode setting (6060h) and Operational mode display (6061h) 5.4 COMMON FUNCTIONS FOR ALL MODES 5.4.1 Digital input setting and status display 5.4.2 Digital output setting and control operation method 5.4.3 Motor Rotational Direction 5.4.4 Stop Settings.	
5.1 EL8-EC MOTION CONTROL STEP-BY-STEP 5.2 CIA402 STATE MACHINE 5.3 DRIVER CONTROL MODE SETTING 5.3.1 Supported control mode (6502h) 5.3.2 Operational mode setting (6060h) and Operational mode display (6061h) 5.4 COMMON FUNCTIONS FOR ALL MODES 5.4.1 Digital input setting and status display 5.4.2 Digital output setting and control operation method 5.4.3 Motor Rotational Direction 5.4.4 Stop Settings 5.4.5 Position mode – Electronic Gear.	
5.1 EL8-EC MOTION CONTROL STEP-BY-STEP 5.2 CIA402 STATE MACHINE 5.3 DRIVER CONTROL MODE SETTING 5.3.1 Supported control mode (6502h) 5.3.2 Operational mode setting (6060h) and Operational mode display (6061h) 5.4 COMMON FUNCTIONS FOR ALL MODES 5.4.1 Digital input setting and status display 5.4.2 Digital output setting and control operation method 5.4.3 Motor Rotational Direction 5.4.4 Stop Settings 5.4.5 Position mode – Electronic Gear. 5.4.6 Position Limits	
5.1 EL8-EC MOTION CONTROL STEP-BY-STEP 5.2 CIA402 STATE MACHINE 5.3 DRIVER CONTROL MODE SETTING 5.3.1 Supported control mode (6502h) 5.3.2 Operational mode setting (6060h) and Operational mode display (6061h) 5.4 COMMON FUNCTIONS FOR ALL MODES 5.4.1 Digital input setting and status display 5.4.2 Digital output setting and control operation method 5.4.3 Motor Rotational Direction 5.4.4 Stop Settings 5.4.5 Position mode – Electronic Gear. 5.4.6 Position Limits 5.4.7 Control Word	
5.1 EL8-EC MOTION CONTROL STEP-BY-STEP 5.2 CIA402 STATE MACHINE 5.3 DRIVER CONTROL MODE SETTING 5.3.1 Supported control mode (6502h) 5.3.2 Operational mode setting (6060h) and Operational mode display (6061h) 5.4 COMMON FUNCTIONS FOR ALL MODES 5.4.1 Digital input setting and status display 5.4.2 Digital output setting and control operation method 5.4.3 Motor Rotational Direction 5.4.4 Stop Settings 5.4.5 Position mode – Electronic Gear 5.4.6 Position Limits 5.4.7 Control Word 5.4.8 Status Word	
5.1 EL8-EC MOTION CONTROL STEP-BY-STEP 5.2 CIA402 STATE MACHINE 5.3 DRIVER CONTROL MODE SETTING 5.3.1 Supported control mode (6502h) 5.3.2 Operational mode setting (6060h) and Operational mode display (6061h) 5.4 COMMON FUNCTIONS FOR ALL MODES 5.4.1 Digital input setting and status display 5.4.2 Digital output setting and control operation method 5.4.3 Motor Rotational Direction 5.4.4 Stop Settings. 5.4.5 Position mode – Electronic Gear. 5.4.6 Position Limits 5.4.7 Control Word 5.4.8 Status Word. 5.4.9 Synchronous cycle time setting	
5.1 EL8-EC MOTION CONTROL STEP-BY-STEP 5.2 CIA402 STATE MACHINE 5.3 DRIVER CONTROL MODE SETTING 5.3.1 Supported control mode (6502h) 5.3.2 Operational mode setting (6060h) and Operational mode display (6061h) 5.4 COMMON FUNCTIONS FOR ALL MODES 5.4.1 Digital input setting and status display 5.4.2 Digital output setting and control operation method 5.4.3 Motor Rotational Direction 5.4.4 Stop Settings. 5.4.5 Position mode – Electronic Gear. 5.4.6 Position Limits 5.4.7 Control Word 5.4.8 Status Word 5.4.9 Synchronous cycle time setting 5.4.10 Driver Enabling	
5.1 EL8-EC MOTION CONTROL STEP-BY-STEP 5.2 CIA402 STATE MACHINE 5.3 DRIVER CONTROL MODE SETTING 5.3.1 Supported control mode (6502h) 5.3.2 Operational mode setting (6060h) and Operational mode display (6061h) 5.4 COMMON FUNCTIONS FOR ALL MODES 5.4.1 Digital input setting and status display 5.4.2 Digital output setting and control operation method 5.4.3 Motor Rotational Direction 5.4.4 Stop Settings. 5.4.5 Position mode — Electronic Gear. 5.4.6 Position Limits 5.4.7 Control Word 5.4.8 Status Word. 5.4.9 Synchronous cycle time setting 5.4.10 Driver Enabling.	
5.1 EL8-EC MOTION CONTROL STEP-BY-STEP 5.2 CIA402 STATE MACHINE 5.3 DRIVER CONTROL MODE SETTING 5.3.1 Supported control mode (6502h) 5.3.2 Operational mode setting (6060h) and Operational mode display (6061h) 5.4 COMMON FUNCTIONS FOR ALL MODES 5.4.1 Digital input setting and status display 5.4.2 Digital output setting and control operation method 5.4.3 Motor Rotational Direction 5.4.4 Stop Settings 5.4.5 Position mode – Electronic Gear 5.4.6 Position Limits 5.4.7 Control Word 5.4.8 Status Word 5.4.9 Synchronous cycle time setting 5.4.10 Driver Enabling 5.5 POSITION MODE (CSP、PP、HM) 5.5.1 Common Functions of Position Mode	
5.1 EL8-EC MOTION CONTROL STEP-BY-STEP 5.2 CIA402 STATE MACHINE 5.3 DRIVER CONTROL MODE SETTING 5.3.1 Supported control mode (6502h) 5.3.2 Operational mode setting (6060h) and Operational mode display (6061h) 5.4 COMMON FUNCTIONS FOR ALL MODES 5.4.1 Digital input setting and status display 5.4.2 Digital output setting and control operation method 5.4.3 Motor Rotational Direction 5.4.4 Stop Settings 5.4.5 Position mode — Electronic Gear 5.4.6 Position Limits 5.4.7 Control Word 5.4.8 Status Word 5.4.9 Synchronous cycle time setting 5.4.10 Driver Enabling 5.5 POSITION MODE (CSP、PP、HM) 5.5.1 Common Functions of Position Mode 5.5.2 Cyclic Synchronous Position Mode (CSP)	
5.1 EL8-EC MOTION CONTROL STEP-BY-STEP. 5.2 CIA402 STATE MACHINE	
5.1 EL8-EC MOTION CONTROL STEP-BY-STEP 5.2 CIA402 STATE MACHINE 5.3 DRIVER CONTROL MODE SETTING 5.3.1 Supported control mode (6502h) 5.3.2 Operational mode setting (6060h) and Operational mode display (6061h) 5.4 COMMON FUNCTIONS FOR ALL MODES 5.4.1 Digital input setting and status display 5.4.2 Digital output setting and control operation method 5.4.3 Motor Rotational Direction 5.4.4 Stop Settings. 5.4.5 Position mode – Electronic Gear. 5.4.6 Position Limits 5.4.7 Control Word 5.4.8 Status Word 5.4.9 Synchronous cycle time setting 5.4.10 Driver Enabling 5.5 POSITION MODE (CSP、PP、HM) 5.5.1 Common Functions of Position Mode. 5.5.2 Cyclic Synchronous Position Mode (CSP) 5.5.3 Protocol Position Mode (PP) 5.5.4 Homing mode (HM).	
5.1 EL8-EC MOTION CONTROL STEP-BY-STEP 5.2 CIA402 STATE MACHINE 5.3 DRIVER CONTROL MODE SETTING 5.3.1 Supported control mode (6502h) 5.3.2 Operational mode setting (6060h) and Operational mode display (6061h) 5.4 COMMON FUNCTIONS FOR ALL MODES 5.4.1 Digital input setting and status display 5.4.2 Digital output setting and control operation method 5.4.3 Motor Rotational Direction 5.4.4 Stop Settings. 5.4.5 Position mode — Electronic Gear. 5.4.6 Position Limits 5.4.7 Control Word 5.4.8 Status Word. 5.4.9 Synchronous cycle time setting 5.4.10 Driver Enabling. 5.5 POSITION MODE (CSP, PP, HM) 5.5.1 Common Functions of Position Mode. 5.5.2 Cyclic Synchronous Position Mode (CSP) 5.5.3 Protocol Position Mode (PP). 5.5.4 Homing mode (HM). 5.6 VELOCITY CONTROL MODE (CSV, PV) 5.6.1 Common Functions of Velocity Control. 5.6.2 Cyclic Synchronous Velocity Mode (CSV)	
5.1 EL8-EC MOTION CONTROL STEP-BY-STEP 5.2 CIA402 STATE MACHINE 5.3 DRIVER CONTROL MODE SETTING 5.3.1 Supported control mode (6502h) 5.3.2 Operational mode setting (6060h) and Operational mode display (6061h) 5.4 COMMON FUNCTIONS FOR ALL MODES 5.4.1 Digital input setting and status display 5.4.2 Digital output setting and control operation method 5.4.3 Motor Rotational Direction 5.4.4 Stop Settings 5.4.5 Position mode — Electronic Gear 5.4.6 Position Limits 5.4.7 Control Word 5.4.8 Status Word 5.4.9 Synchronous cycle time setting 5.4.10 Driver Enabling 5.5 POSITION MODE (CSP、PP、HM) 5.5.1 Common Functions of Position Mode 5.5.2 Cyclic Synchronous Position Mode (CSP) 5.5.3 Protocol Position Mode (PP) 5.5.4 Homing mode (HM) 5.6 VELOCITY CONTROL MODE (CSV、PV) 5.6.1 Common Functions of Velocity Control	

5.7.1 Common Functions of Torque Mode	223
5.7.2 Cyclic Synchronous Torque Mode (CST)	224
5.7.3 Profile Torque Mode (PT)	
CHAPTER 6 APPLICATION	
CHAPTER 6 APPLICATION	
6.1 GAIN ADJUSTMENT	227
6.2 Inertia ratio identification	
6.2.1 Online inertia determination	230
6.2.2 Offline inertia determination	
6.3 EASY TUNING	232
6.3.1 Single Parameter Tuning	
6.3.2 One-click Tuning	233
6.4 Auto gain adjustment	235
6.5 Manual gain adjustment	240
6.6 PARAMETERS ADJUSTMENT UNDER DIFFERENT CONTROL MODES	242
6.7 GAIN SWITCHING	
6.7 3 rd Gain Switching	249
6.8 FEEDFORWARD GAIN	250
6.8.1 Velocity feedforward	251
6.8.2 Torque feedforward	252
6.9 MODEL FOLLOWING CONTROL	253
6.10 ZERO TRACKING CONTROL	254
6.11 FRICTION COMPENSATION FUNCTION	256
6.12 VIBRATION SUPPRESSION	257
6.12.1 Mechanical resonance suppression	257
6.12.2 End vibration suppression	
6.12.3 Mechanical properties analysis	260
6.13 Position comparison	260
6.15 FULL CLOSED LOOP CONTROL	267
6.16 MULTITURN ABSOLUTE ENCODER	270
6.16.1 Parameters setting	270
6.16.2 Read absolute position	
6.16.3 Absolute Encoder Related Alarm	
6.16.6 Battery kit	
6.17 Probe	
6.17.1 Probe function	
6.17.2 Signal Input of EXT1 and EXT2	
6.17.3 Probe Control Word 60B8h	
6.17.4 Probe Status Word 60B9h	
6.17.6 Latch Position Register	
6.17.7 Latch Counter Register	
6.17.8 Probe mode	
6.18 SAFETY FUNCTIONS	
6.18.1 External brake deactivation output signal BRK-OFF	
6.18.2 Emergency stop function	
6.19 Other Functions	
6.19.1 Functions under Position mode	
6.19.2 Functions under velocity mode	
6.19.3 Functions under torque mode	290
CHAPTER 7 ETHERCAT COMMUNICATION	291
7.1 ETHERCAT PRINCIPLE FUNCTION	291
7.2 SYNCHRONOUS MODE	292
7.2.1 Free Running Mode	292
7.2.2 Distributed clock synchronization mode	
7.3 ETHERCAT STATE MACHINE	
7.4 CANOPEN OVER ETHERCAT (COE)	294

CONTACT US	336
8.5 ETHERCAT COMMUNICATION ALARM	325
8.4.1 Servo Drive Alarm	
8.4 ALARM CLEARING	
8.3 Alarm Handling	
8.2 Servo drive alarm	300
8.1 Servo drive warning	
CHAPTER 8 WARNING AND ALARM	300
7.5 NETWORK STATUS DISPLAY	298
7.4.4 Process Data Object (PDO)	295
7.4.3 Service Data Object (SDO)	295
7.4.2 Object dictionary	
7.4.1 Network structure of EL8-EC	294

List of abbreviations used in this manual

Abbreviation	Full Form
Bit/S	Bit Per Second
CoE	CANopen Over EtherCAT
IP	Init To Pre-Operation
PI	Pre-Operational To Init
PS	Pre-Operational To Safe-Operational
SP	Safe-Operational To Pre-Operational
SO	Safe-Operational To Operational
OS	Operational To Safe-Operational
OI	Operational To Init
SI	Safe-Operational To Init
VS	Versus
PDO	Process Data Objects
SDO	Service Data Objects
SM	Synchronization Manager
FMMU	Fieldbus Memory Management Unit
h	Hex
U8	Unsigned Char
U16	Unsigned Short
U32	Unsigned Long
18	signed Char
I16	signed Short
l32	signed Long
RW	Read Write
RO	Read Only
WO	Write Only
Var.	Variable
ETG	EtherCAT Technology Group
ESC	EtherCAT Slave Controller
ESM	EtherCAT State Machine
DI	Digital Input
DO	Digital Output
Al	Analog Input
AO	Analog Output
PP	Profile Position Mode
PV	Profile Velocity Mode
PT	Profile Torque Mode
HM	Homing Mode
CSP	Cyclic Synchronous Position Mode
CSV	Cyclic Synchronous Velocity Mode
CST	Cyclic Synchronous Torque Mode
Uint	
Uint/S	
Uint/S ²	
P	Pulse
S	Second
RPM	Revolutions Per Minute

Chapter 1 Introduction

1.1 Product Introduction

EL8-EC Series AC Servo Product is a whole new high-end AC servo drivers and motors product range that we have proudly developed at Leadshine Technology Co.,Ltd. This product series provides more in demand functionalities with better performance and safety assurance. Applicable in most high end usages.

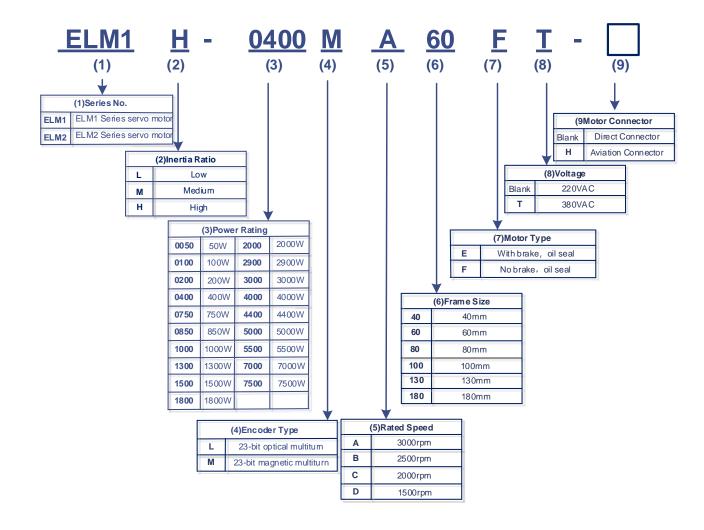
EL8-EC series AC servo drivers range from power rating of 450W up to 2000W. Our EL8-EC series AC servo drivers supports EtherCAT communication protocol which can be seamlessly connected to motion controllers (PLC)/drivers that support this standard protocol.

Besides, our standard servo driver features such as dynamic braking and internal holding brake which comes with internal regenerative resistor, our EL8-EC drivers now also comes with Safe Torque Off (STO) function, Gantry synchronization, full closed loop functionalities and much more.

First time user of the EL8-EC series servo products can refer to this manual for more information on this product that cannot be covered in this short introduction. For further technical support, please do contact us or any local Leadshine certified retailers on Contact Us page.

1.2 Model Number Structure

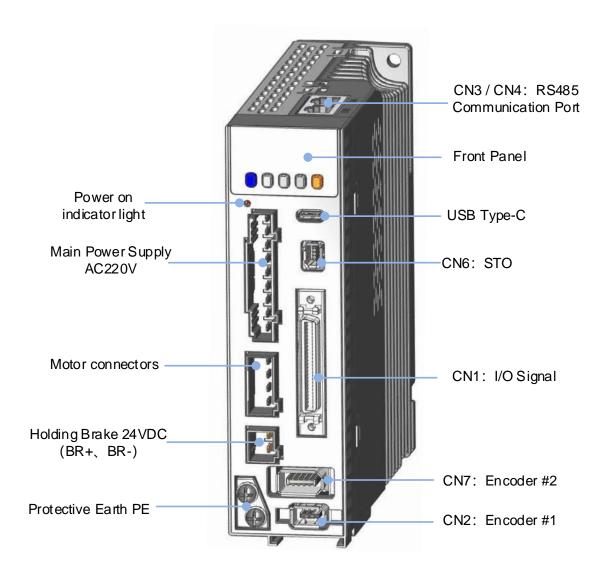
1.2.1 Servo Drive


No.	Description			
1	Series No.	EL8: EL8 AC Servo Drive Series		
2	Communication protocol	RS: Pulse train + RS485 EC: EtherCAT		
3	Power Rating	400: 400W 750: 750W 1000:1000W 1500: 1500W 2000: 2000W		
4	Туре	F: Full functions		
5	Extra(customized)	Blank: Standard		

Driver label

1.2.2 Servo motor

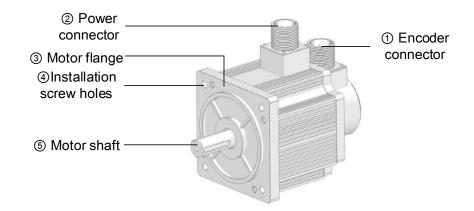
1.3 Servo Drive Technical Specifications


EL8-EC Series Driver		EL8-EC400F	EL8-EC750F	EL8-EC1000F	EL8-EC1000F	EL8-EC2000F		
Power Rating		400W	750W	1000W				
Rated Current	Rated Current (A)		2.8	5.5	7.0	Comin	g Soon!	
Peak Current (A)			9.3	16.9	21.2			
Control circuit		upply			- +10%, 50/60			
Main power su		(0)		1-Ph/3-Ph AC 200V-240V,-10% - +10%, 50/60Hz				
Regenerative resistor	Resistan Power	Ce(12)	100 50	50			-	
	rating(W)	Air-cooled	75 - Fan-cooled		-		
Cooling metho								
Dimension H*I	L*W(mm)		150*150*43		150*	160*55		
Ports					scriptions			
USB Type-C						ng to main pov	ver supply	
Crossover Fre Output	quency				rossover freque ossover freque			
Analog Input					·10V, Max. volt			
Analog Output	t		<u> </u>	O1/AO2), -10				
Digital Input		8 Digital Inputs (Supports common anode or cathode connection) 1. Clear Alarm (A-CLR) 2. Positive limit switch (POT) 3. Negative limit switch (NOT) 4. Homing switch (HOME-SWITCH) 5. Emergency stop (E-Stop) 3 Digital outputs (3 double-ended, DO1~DO3)						
3 Digit 1. Alar 2. Sen 3. Exte 4. Pos 5. Velo 6. Toro 7. Zen 8. Velo 9. Pos 10. Ve 11. Ve 12. Se 13. Ho		m (ALM) yo ready (SRD) ernal brake off itioning completion output at arrival (que limiting corporation output coincident output command output limit (V-L output command output command output limit (V-L output command output command output limit (V-L output command output limit (V-L output command output limit (V-L output limit limit (V-L output limit limit (V-L output limit	Y) (BRK-OFF) eted (INP) (AT-SPEED) nmand (TLC) on (ZSP) cc (V-COIN) I (P-CMD) IMIT) d (V-CMD) GRV-ST)					
Safe Torque Off (STO) Availab			ole for all EL8-	ECF series se	rvo drives			
		Interna	l holding brake	e. External rela	ay not needed			
		EtherC	AT Protocol, F	RJ45 port				
			Co	ontrol Mode				
		Profile	Position Mode	e (PP)				
Position		Cyclic Synchronous Position Mode (CSP)						
		Homing Mode (HM)						
		Profile Velocity Mode (PV)						
Velocity		Cyclic Synchronous Velocity Mode (CSV)						
Torque		Profile	Torque Mode	(PT)				

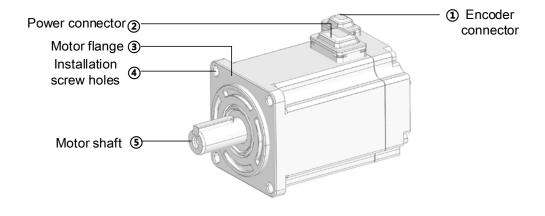
		User manual of EL6-EC F AC Servo		
	Cyclic Synchronous Torque Mode (CST)			
Control Features				
Drive Mode	IGBT SVPWM sinusoidal wave drive			
Feedback Method	Encoder: RS4	85 Protocol		
Standardized	Quick tuning	of servo driver parameters can be achieved through PC tuning		
Parameters	tools.			
Easy-to-use	One-click tuni	ng, Single parameter tuning, Black box, Zero tracking control		
Notch Filter	Mechanical re	sonance suppression. Supports up to 3 filters,50Hz~4000Hz		
Vibration	End vibration	suppression		
suppression	End vibration suppression			
DI/DO settings	Digital inputs	and outputs can be set accordingly		
Alarm	Overcurrent. Overvoltage. Undervoltage. Overheat. Overload. Overtravel. Single-Phasing. Regenerative resistor error. Position deviation error. Encoder feedback error. Excessive braking rate. EEPROM error			
Front Panel	5 push buttons, 8-segments display, 5 warning LEDs			
Software	Driver tuning through Motion Studio Ver. 2.2.x. Parameters tuning in current loop, position loop, velocity loop; Modify I/O signal and motor parameters; Variables(velocity, position deviation, etc.) monitoring using step diagrams			
Communication	USB Type-C	Modbus USB2.0 (No need to connect driver to power supply)		
Communication	EtherCAT	RJ45. Communication up to 128 axes to a host		
Dynamic Brake	Internal dynamic brake			
Position Comparison	42 position comparison outputs			
Suitable Load Inertia	tia 30 times smaller than motor inertia			
Environmental requirements				
Tomporoturo	Storage: -20-80°C (Condensation free);			
Temperature	Installation: 0-55°C (Not frozen)			
Humidity	Under 90%RH (Condensation free)			
Altitude	Up to 1000m above sea level			
Vibration	Less than 0.5G (4.9m/s2) 10-60Hz (non-continuous working)			
IP ratings	IP20			

1.4 Servo Drive Ports and Connectors

Front View of EL8-EC AC Servo Drive



Description
Including a LED display and 5 buttons. LED display is used to display servo driver status and parameter settings. 5 buttons: M : To switch between different modes and parameters ■ : Switch between value ■ : Switch between sub-menus/Increase ▼ : Switch between sub-menus/Decrease S : Enter
Connect to computer for tuning of servo driver. Parameters of the servo driver can be modified without connecting to main power supply.
STO connecters. Used for any application requiring STO functions.
I/O signal connection terminals(SCSI-26PIN)
Connect to motor encoder
Connect to external encoder (Supports ABZ incremental encoder only.)
Connect to controller with RS485 interface
BR+/BR- brake terminals
Lights up when servo driver is connected to main power supply. Please do not touch the power terminal immediately after power off as the capacitor might require some time to discharge.
L1C、L2C: Control circuit power supply(Single phase 220VAC) L1、L2、L3: Main power supply 220VAC Note: EL8 series supports 1P/3P 220VAC main power supply P+,B1,B2: Connect B1 and B2 to use internal regenerative resistor; If an external regenerative resistor is needed, connect it to P+ and B2, disconnect B1 and B2.
U,V,W Motor connector: Connect to U,V,W terminals on servo motor PE motor earth terminal: Connect to motor PE terminal
Connect to PE of main power supply. For grounding

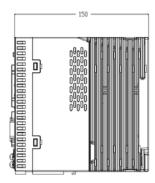


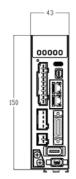
1.5 Motor ports and connectors

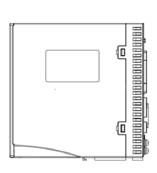
Motors with aviation connectors

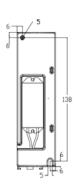
Motors with direct connectors

Chapter 2 Installation & Wiring

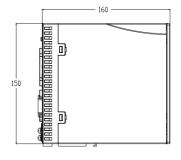

2.1 Servo Drive Installation


2.1.1 Servo drive installation environment

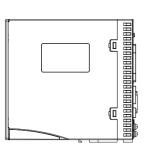

Tomporaturo	Storage: -20-80°C (Condensation free);
Temperature	Installation: 0-55°C (Not frozen)
Humidity Under 90%RH (Condensation free)	
Altitude Up to 1000m above sea level	
Vibration Less than 0.5G (4.9m/s2) 10-60Hz (non-continuous wor	
Atmospheric No corrosive gas, combustibles, dirt or dust.	
IP ratings	IP20


2.1.2 Servo drive dimension

Dimension 1: EL8-EC400F

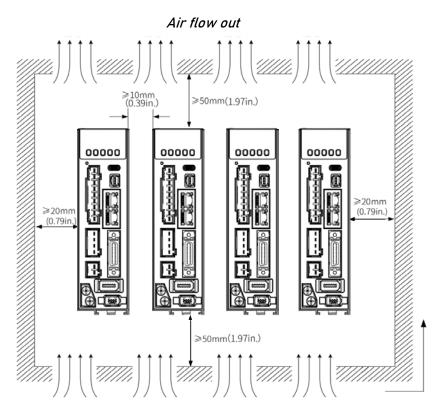






150mm×150mm×43mm

Dimension 2: EL8-EC750 / 1000F



150mm×160mm×55mm

Space requirement for installation

In order to ensure efficient heat dissipation, please leave at least 10mm installation space in between drivers. If drivers need to be mounted compactly, please leave at 1mm of installation space. Please keep in mind that under such conditions, the drivers can only run at 75% of actual load rate.

Air flow in

Installation method

Please install the driver vertical to ground facing forward for better heat dissipation. Always install in rows and use heat insulation board to separate between rows. Cooling fans are recommended for drivers to achieve optimal performance.

Grounding

PE terminals must be grounded to prevent electrocution hazard or electromagnetic interference.

Wiring

Please ensure there is no liquid around the wiring and connectors as liquid leakage may cause serious damage to the driver(s).

> RJ45 port cover

Please cover unconnected RJ45 port(s) on top of the driver to prevent dust or liquid from damaging the ports.

Battery kit

If there is a need for battery kit, please remember to leave a room in the electrical cabinet for it.

2.2 Servo Motor Installation

2.2.1 Installation conditions

Installation conditions may affect the lifespan of a motor

- Please keep away from corrosive fluid and combustibles.
- If dusty working environment is unavoidable, please use motors with oil seal.
- Please keep away from heat source.
- ➤ If motor is used in enclosed environment without heat dissipation, motor lifespan will be short.
- Please check and clean the installation spot before installation.

2.2.2 Precautions during installation

Installation method

Install horizontal to ground

Make sure power cable and encoder cable is facing downwards to make sure fluid doesn't leak into the ports.

Install vertical to ground

Please use a motor with oil seal when paired with a reducer to prevent reducer oil from leaking into the motor.

Oil- and waterproofing

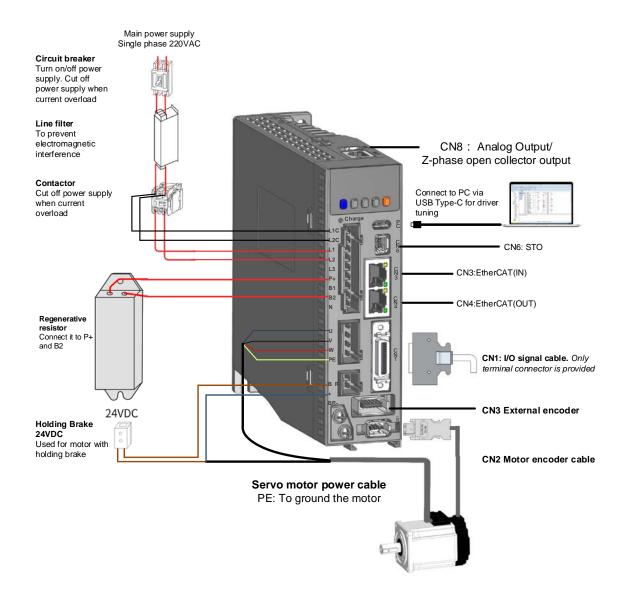
- Do not submerge motor/cable under oil/water
- Please use a motor with oil seal when paired with a reducer to prevent reducer oil from leaking into the motor.
- ➤ If there is an unavoidable fluid leakage near the motor, please use motor with better IP ratings.
- Make sure power cable and encoder cable is facing downwards to make sure fluid doesn't leak into the ports.
- Avoid the usage of motor in water/oil leaking prone environment.

Cable under stress

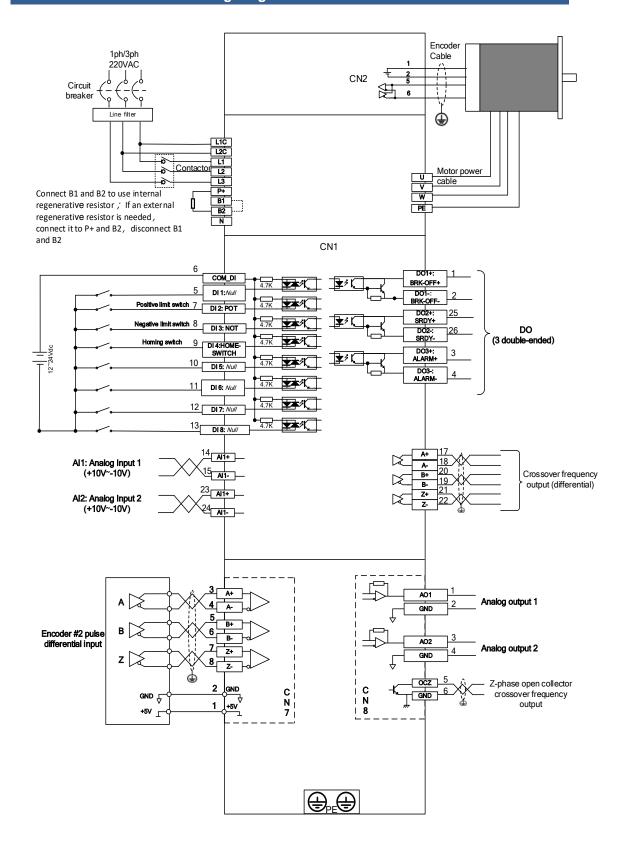
- Do not the bend the cable especially at each ends of the connectors.
- Make sure to not let the cables be too tight and under tremendous stress especially thinner cables such as signal cables.

Connectors

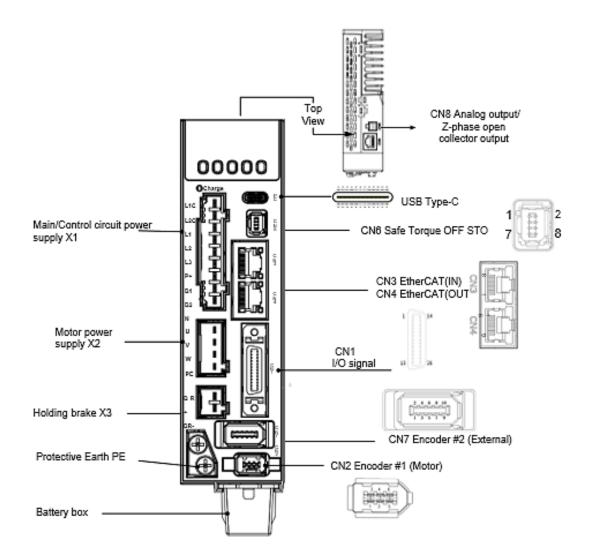
- Please to remove any conductive foreign objects from the connectors before installation
- ➤ The connectors are made of resin. May not withstand impact.
- Please hold the driver during transportation, not the cables.
- Leave enough "bend" on the connector cables to ensure less stress upon installation.


Encoder & coupling

- During installation or removal of coupling, please do not hit the motor shaft with a hammer as it would cause damage to internal encoder.
- Please make sure to centralize the motor shaft and coupling, it might cause damage to motor or encoder due to vibration.
- Please make sure axial and radial load is within the limits specified as it might affect the lifespan of the motor or cause damage to it.


2.3 EL8-EC Wiring Diagram

EL8-EC 220VAC Wiring Diagram



EL8-EC 220VAC Electrical Wiring Diagram

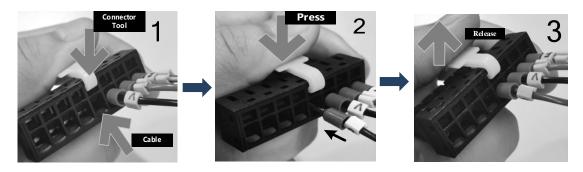
2.4 Servo Drive Ports

Port	Description
CN1	I/O Signal (50 pins)
CN2	Motor encoder feedback input
CN3	EtherCAT (IN) Communication Port
CN4	EtherCAT (OUT) Communication Port
CN5	RS422 Communication Port
CN6	Safe Torque Off (STO)
CN7	2 nd Encoder feedback input (External)
CN8	Analog output/Z-phase open collector output
X1/X2	Main/Control circuit power supply; Motor power supply
Х3	Holding Brake
USB	USB Type-C (Connect to PC)

2.5 Main/Control circuit power supply X1

Pin	Label	Explanation	Remarks	
L1C	Control circuit L1	Control circuit power supply. Single phase	① Optional isolated switching power supply:	
L2C	Control circuit L2	220VAC	② Connecting to 380VAC will cause damage to driver;	
L1	Main power supply L1	Single phase 220VAC.	3 Line filter is suggested in environment with strong	
L2	Main power supply L2		Use a fuseless circuit breaker	
L3	Main power supply L3	+10%,50/60Hz	to turn on/off power supply to driver.	
P+	DC Bus positive terminal	Internal DC bus positive terminal External regenerative resistor P terminal	Connect B1 and B2 to use internal regenerative resistor If an external regenerative	
B1	Regenerative resistor terminal	Internal regenerative resistant drawing terminal	resistor is needed, connect it to P+ and B2, disconnect B1 and B2.	
B2	Regenerative resistor terminal	Internal IGBT transistor		
N	DC Bus negative terminal	Internal DC bus negative terminal	Please don't connect to any cable	

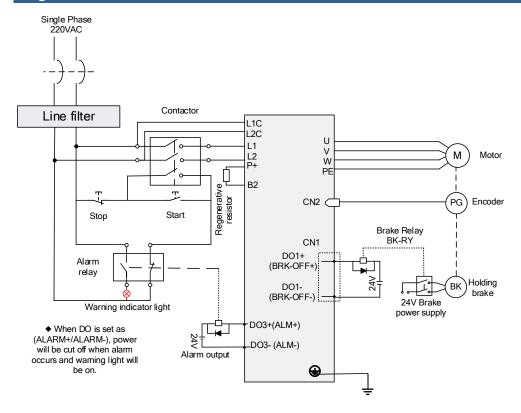
2.5.1 Main power supply cable selection

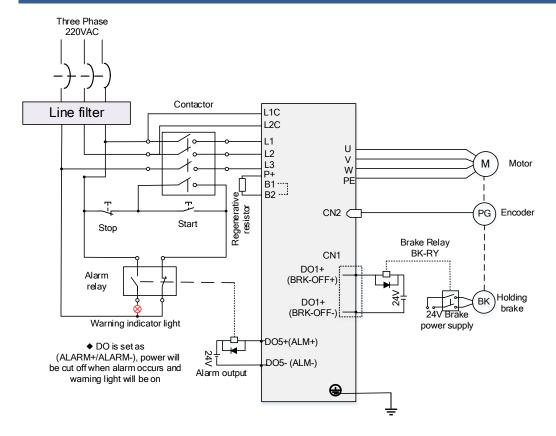

Please connect to L1C/L2C (Control circuit) and L1/L2/L3 (Main power) to rated power supply voltage for the driver to operate under normal working condition. Driver will not function without both connected properly.

Main power supply wire gauge

Driver	Wire diameter (mm²/AWG)					
Dilvei	L1 L2	P+ BR	U V W	PE		
EL8-EC400F	0.81/AWG18	2.1/AWG14	1.3/AWG16	2.1/AWG14		
EL8-EC750F	0.81/AWG18	2.1/AWG14	1.3/AWG16	2.1/AWG14		
EL8-EC1000F	0.81/AWG18	2.1/AWG14	2.1/AWG14	2.1/AWG14		

- \triangleright Grounding: Grounding wire should be thicker. Ground PE terminal of servo drive and servo motor together with resistance <100 Ω .
- > A 3-phase isolation transformer is recommended to lessen the risk of electrocution
- Connect a line filter to power supply to reduce electromagnetic interference.
- Please install a fuseless circuit breaker to cut off power supply in time when the driver fails.

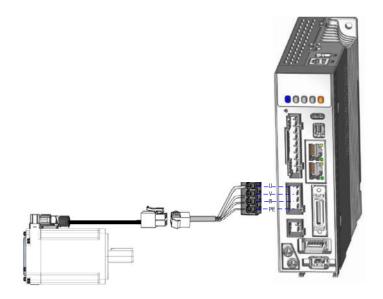

To fix wire cables into connector



2.5.2 Single/Three phase power supply wiring diagram

Single Phase 220VAC

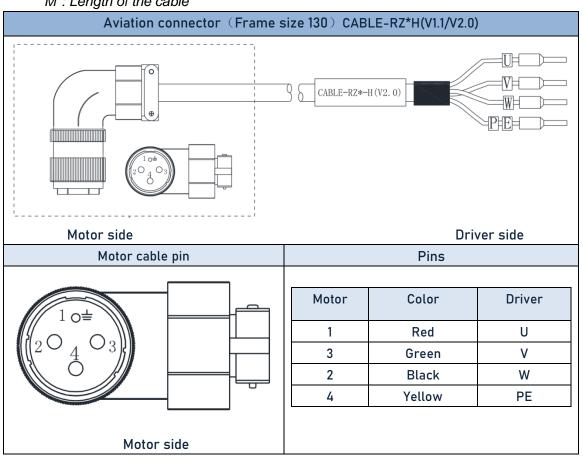
Three Phase 220VAC

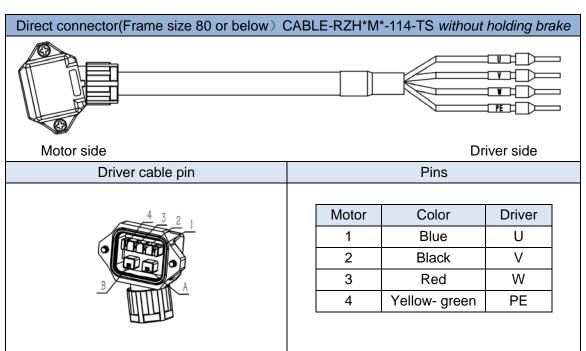


2.6 Motor Power Supply X2

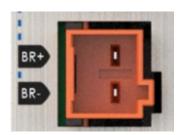
Pin	Label	Explanation	Remarks
U	U terminal	To motor U terminal	① Please make sure U, V, W terminals
V	V terminal	To motor V terminal	of driver and motor are correctly
W	W terminal	To motor W terminal	connected. Connect motor PE to driver PE and
PE	PE	Motor frame	ground.

2.6.1 Motor power cable selection (Port X2)


Example of motor power cable connection using an AMP electrical connector Please connect the wires to corresponding terminals as labeled.

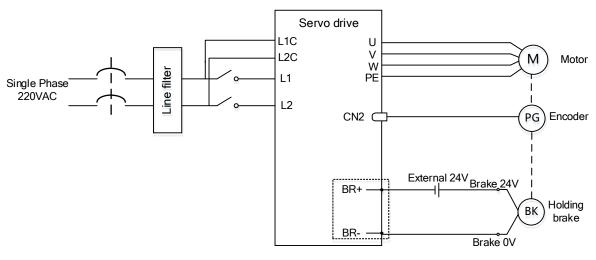

Motor winding power cable

- Wire length available: 1.5m, 3m and 5m
- Connectors type available: AMP electrical connectors, aviation connectors, direct connectors (recommended)
- Please contact Leadshine sales team or any Leadshine certified local retailers for any customized needs.

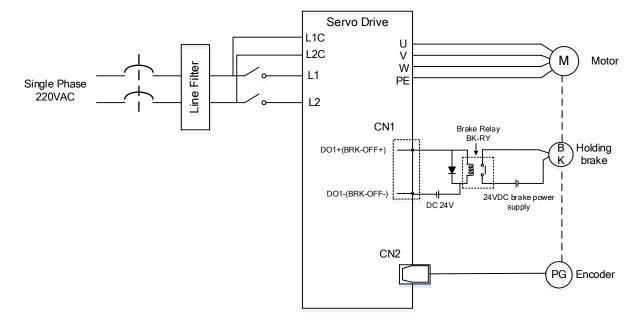

M: Length of the cable

2.7 Holding Brake X3

Pin Label		Explanation	
BR+ (BR1)	Brake positive terminal	Connect to external power supply 24v negative terminal	
BR- (BR2)	Brake negative terminal	Connect to motor brake terminal 0V	

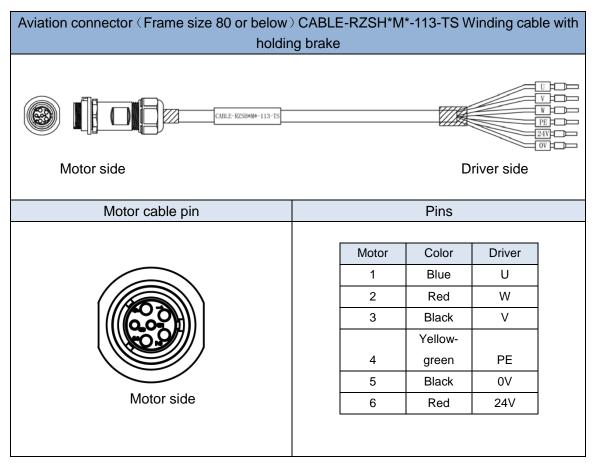


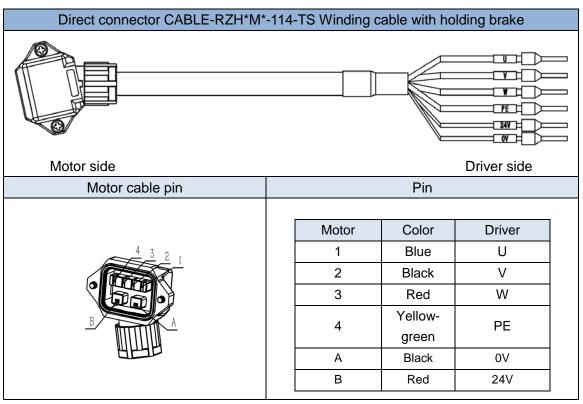
2.7.1 Holding brake wiring diagram


Holding brake is activated when servo drive is not powered on to prevent axis from moving due to gravitational pull or other external forces by locking the motor in place. Usually used on axis mounted vertically to the ground so that the load would not drop under gravitational force when the driver is powered off or when alarm occurs.

EL8 series servo drives support direct drive holding brake. Please connect BR+ and BR-to an external 24v power supply and motor brake terminal to control the holding brake. There is no need for an external relay.

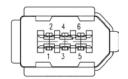
1. Using internal holding brake output port X3 (Easy wiring, no need for an extra relay)




2.Connect to the DO(BRK+/BRK-)

2.7.2 Cable selection for motor with holding brake

- Mechanical noise might exist when motor with holding brake is in operation but it doesn't affect the functionality of the motor.
- When the holding brake circuit is closed (holding brake deactivated), there might be magnetic flux leakage. Please be aware to not use magnetic sensor around motor with holding brake.
- > 24V operating voltage for the holding brake has to be ensured to maintain the functionality of the holding brake. Please consider the voltage dropped over lengthy motor cables due to increase in cable resistance.
- It is recommended to have an isolated switching power supply for the holding brake to prevent malfunctioning of the holding brake in case of voltage drop.



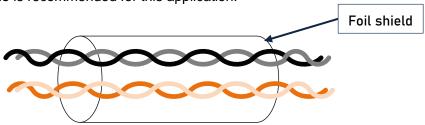
2.8 I/O signal CN1

EL8-EC series servo drives use SCSI 26-pin connector.

Port	Diagram	Pin	Label	Signal	Description	
	_	6	DI-COM	Input	Common digital input	
		5	DI1	-	Digital input 1	
		7	DI2	POT	Positive limit switch	
		8	DI3	NOT	Negative limit switch	
		9	DI4	HOME-SWITCH	Homing switch	
		10	DI5	-	Digital input 5	Supports probe
		11	DI6	-	Digital input 6	latching
		12	DI7	-	Digital input 7	compensation
	1 11	13	DI8	-	Digital input 8	
	1 14 2 15	1	DO1+	BRK-OFF+	External brake released signal	
	2 15	2	DO1-	BRK-OFF-		
		25	DO2+	S-RDY+	Comes ready signal output	
		26	DO2-	S-RDY-	Servo ready signal output	
CN1		3	DO3+	ALM+	- Alarm output	
		4	DO3-	ALM-	Alaim output	
		17	A+		Phase A crossover frequency output	
		18	A-			
		20	B+	Differential	Phase B crossover frequency output	
		19	B-	output		
		21	Z+		Phase Z crossover frequency output	
		22	Z-			
		16	GND	Signal ground	Signal ground	
		14	Al1+	Al1	Analog input 1	
		15	AI1-	AH		
		16	Al2+	Al2	Analog input 2	
		17	Al2-			
		Frame		FG	Ground	

2.9 Encoder #1 (Motor) CN2

Connector	Pin	Signal	Explanation	
	1	VCC5V	Power supply 5V	
	2	2 GND Power supply grou		
	3	BAT+	Battery positive terminal	
CN2	4	BAT-	Battery negative terminal	
	5 SD-		SSI Data+	
	6 SD-		SSI Data-	
	Frame	PE	Shield grounding	


Pin terminals on motor side

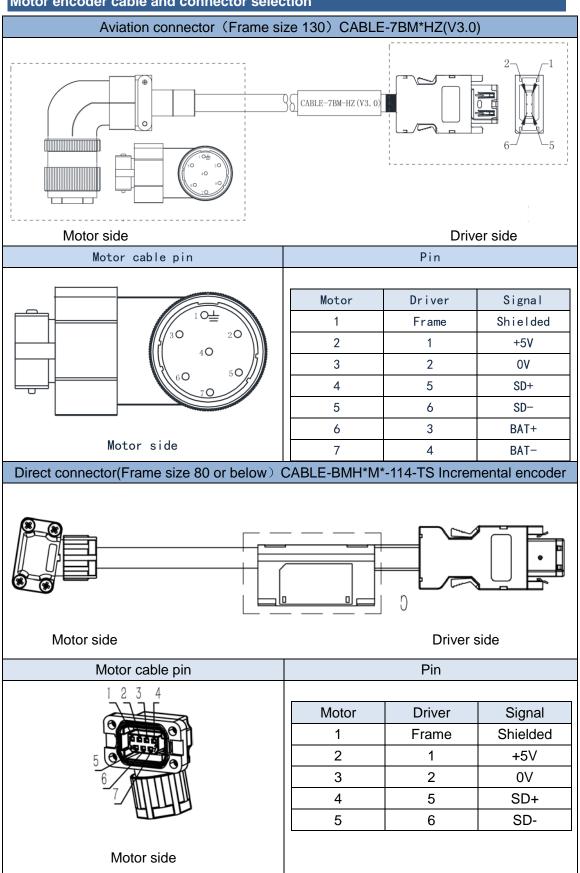
Driver side	Pin	Motor side			
(1394 6PIN)		Frame 80 or	Frame 130	Frame 130	
,		below	114110 100	(850w,1300w,1800w)	
Frame		1 (Shielding)	1 (Shielding)	1 (Shielding)	
1	5V	2	2	7	
2	0V	3	3	5	
5	SD+	4	4	6	
6	SD-	5	5	4	
(3)	BAT+	(6)	(6)	(3)	
(4)	BAT-	(7)	(7)	(2)	

2.9.1 Cable selection for I/O signal port CN1 and encoder feedback port CN2

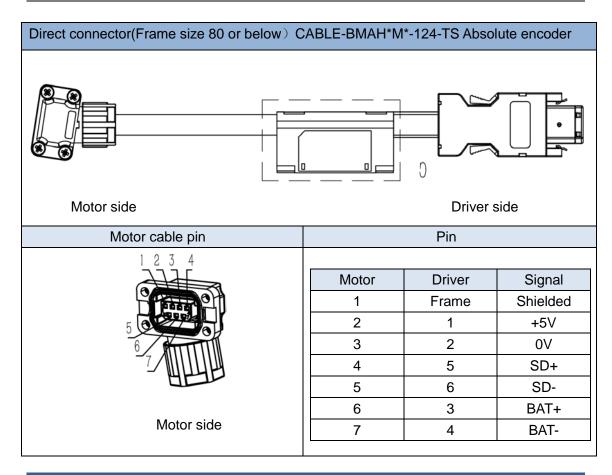
I/O signal cable

To ensure I/O signal to not be affected by electromagnetic interference, a **shielded twisted pair cable** is recommended for this application.

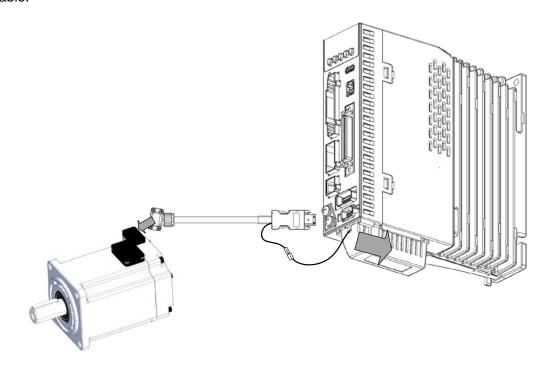
Diameter: Recommended to use stranded and shielded cable. For CN1, \geq 0.14mm², CN2 \geq 0.25mm², shielding layer needs to be grounded.


Length: Cable length should be as short as possible. No more than 3m for CN1 and 20m for CN2.

Placement: Place the cable away from power cables.

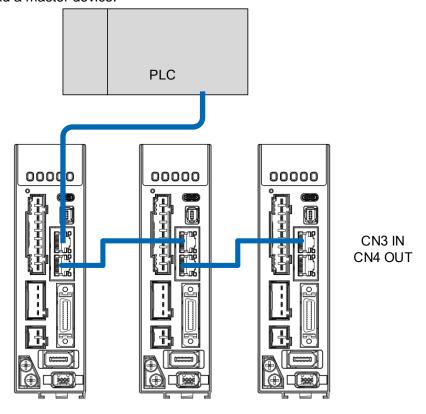

- Install a surge suppressor in feedback circuit; flyback diode inversely connected in parallel in DC coil and capacitor connected in parallel in AC coil.
- I/O signal included DI, DO and relay output signal
- Please keep 30cm away from main power supply cable or motor power cable to avoid electromagnetic interference.

Motor encoder cable and connector selection



Battery box for absolute encoder

EL8-EC series servo drives come with battery kit installed on the driver or on the encoder cable.



2.10 EtherCAT communication port CN3/CN4

Port	Diagram	Pin	Signal	Description
		1.0		EtherCAT Data sending
			1, 9	E_TX+
		0.40	F TV	EtherCAT Data sending
		2, 10	E_TX-	negative terminal
		3, 11	E DV.	EtherCAT Data receiving
CN3			E_RX+	positive terminal
		4, 12		
CN4		5, 13		
		6 14	F DV	EtherCAT Data receiving
		6, 14	E_RX-	negative terminal
		7, 15		
		8, 16		
		Frame	PE	Shielding grounded

EtherCAT communication can be between multiple drivers and a master device or single driver and a master device.

2.11 Safe Torque Off (STO) Port

Port	Pin	Signal	Description	Remarks
	1	24V	24v power supply	Connect to SF1 and SF2
	2	0V	Reference ground	when not in use. Do not use to supply power.
8 8 7	3	SF1+	Control signal 1 positive input	
	4	SF1-	Control signal 1 negative input	When SF1 = OFF or SF2 =
2	5	SF2+	Control signal 2 positive input	OFF,STO is enabled.
	6	SF2-	Control signal 2 negative input	
	7	EDM +	External monitoring device (EDM) with	When SF1 = OFF or SF2 = OFF,EDM = ON
	8	EDM —	differential double ended output	OIT,EDIVI - OIV

Introduction to Safe Torque Off (STO)

Function: Cut off motor current supply physically (through mechanical means)

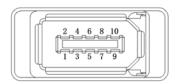
STO module (CN6 connector) consists of 2 input channels. It cuts off the motor current supply by blocking of PWM control signal from the power module. When the motor current is cut off, the motor will still move under inertia and stops gradually.

The STO function is set up ready to be used by factory default. Please remove STO connector if it is not needed.

STO functional principle

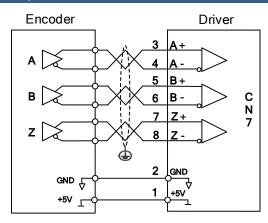
STO module cuts off the motor current supply and stops motor gradually by blocking of PWM control signal from the power module through 2 isolated circuits. When a STO error occurs, the actual status of STO can be determined by the EDM status feedback.

SF1 Input	SF2 Input	EDM Output	PWM control	Alarm code
Status	Status	Status	signal	
ON	ON	OFF	Normal	-
ON	OFF	OFF	Blocked	Er 1c2
OFF	ON	OFF	Blocked	Er 1c1
OFF	OFF	ON	Blocked	Er 1c0


STO wiring diagram

STO in use STO not in use CN₆ CN6 24V 24V 0V0V╢ Please disconnect 0V 24v power supply 2 only for STO, 24V and 24V while in use please do not use it for other purposes. SF1-SF1-4 2.2K SF1+ SF1+ 2.2K SF2-24V SF2-6 External SF2+ SF2+ power supply EDM-EDM-8 8 EDM+ EDM+

- Please take precautions when enabling STO functions as servo drive will lose control over the motion of the motor. Motor might dropped under gravitational pull (vertically mounted load) or moved when external forces are applied to it. Alternatively, motor with holding brake can be chosen.
- > STO is not meant to cut off the power supply of the servo drivers and motors completely. Please power off and wait for a few minutes before starting maintenance work.
- It is recommended to use an isolated power supply for STO signal input as any current leakage might cause STO malfunction.
- Please remove the shorting connector from the STO port and use the provided STO cable if the function is required.

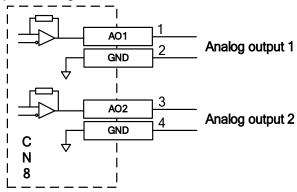


2.12 Encoder #2 (External) CN7

Pin	Signal	Description
1	5V	Power supply 5V
2	GND	Power supply ground
3	A+	Phase A+ pulse input
4	A-	Phase A- pulse input
5	B+	Phase B+ pulse input
6	B-	Phase B- pulse input
7	Z+	Phase Z+ pulse input
8	Z-	Phase Z- pulse input
Frame	FG	Shield grounding

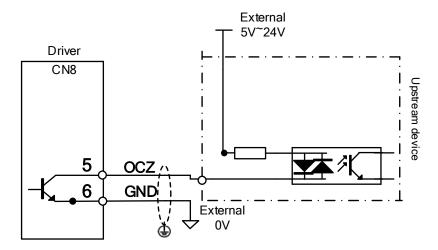
External encoder pulse input

- Please connect the encoder reference ground terminal to driver ground terminal. Recommended to use double winding cable with shielding foil, Connect the shielding foil to CN7 connector to reduce noise interference.
- External encoder input method: Differential input


2.13 Analog and Z-phase open collector output CN8

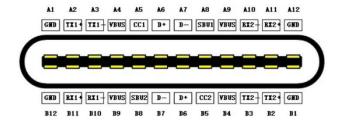
CN8 has 2 analog outputs and 1 Z-phase open collector output

Port	Diagram	Pin	Signal	Description	Remarks
		1	AO1	Analog output 1	
		2	GND	Signal ground	
		3	AO2	Analog output 2	
CN8	5	4	GND	Signal ground	
		E	OCZ	Z-Phase open	Only NPN Open
		5 OCZ		collector output	.
		6	GND	Signal ground	collector output


Analog outputs

Both analog outputs settings can be modified in Pr4.65 and Pr4.70.

Encoder Z-phase crossover frequency output (Open Collector)


Encoder output signal will be through Open Collector after frequency division. Please connect ground terminal of external power supply to CN6 pin 6 signal ground using double winding shielded cable for better protection against interference.

2.14 USB Type-C tuning port

EL8-EC series servo drive can be connected to PC for performance tuning, data monitoring and parameters modifying using a **USB Type-C data cable**. Can be done without the servo drive connecting to main power supply.

Port	Pin	Signal	Description
	A4, B4,A9, B9	VCC 5V	Power supply positive terminal 5V
LICD	A12,B12,A1,B1	GND	Power supply negative terminal
USB	A6,B6	D+	USB data positive terminal
Type-C	A7,B7	D-	USB data negative terminal
	Frame	USB_GND	Ground through capacitor

2.15 Regenerative resistor selection and connections

The use of regenerative resistor

When the motor opposes the direction of rotation as in deceleration or vertical axis escalation, part of the regenerative energy will be delivered back to the driver. This energy will first be stored in internal capacitors of the driver. When the energy stored in the capacitors reach the maximum capacity, a regenerative resistor is required the excessive energy to prevent over-voltage.

Selection of regenerative resistor

EL8-EC series servo drives are equipped with internal regenerative resistor. If an external resistor is needed, please refer to the table below.

Madalina	Internal regenerative resistor		Minimum allowable	
Model no.	Resistance(Ω)	Power rating(W)	Resistance(Ω)	Power rating(W)
EL8-EC400	100	50	50	50
EL8-EC750	50	75	40	50
EL8-EC1000	50	75	30	75

Calculation of regenerative resistance under normal operation

Steps:

- 1. Determine if driver comes with a regenerative resistor. If not, please prepare a regenerative resistor with resistance value higher than might be required.
- 2. Monitor the load rate of the regenerative resistor using front panel (d14). Set the driver on high velocity back and forth motions with high acceleration/deceleration.
- 3.Please make sure to obtain the value under following conditions: Driver temperature < 60°C, d14<80(Won't trigger alarm), Regenerative resistor is not fuming, No overvoltage alarm(Err120).

Pb(Regenerative power rating) = Resistor power rating x Regenerative load rate (%)

Please choose a regenerative resistor with power rating Pr about **2-4 times the value of Pb** in considered of harsh working conditions and some 'headroom'.

If the calculated Pr value is less than internal resistor power rating, external resistor is not required.

 $R(Max. required regenerative resistance) = (380^2 - 370^2)/Pr$

Problem diagnostics related to regenerative resistor:

- If driver temperature is high, reduce regenerative energy power rating or use an external regenerative resistor.
- If regenerative resistor is fuming, reduce regenerative energy power rating or use an

external regenerative resistor with higher power rating.

- ➤ If d14 is overly large or increasing too fast, reduce regenerative energy power rating or use an external regenerative resistor with higher power rating.
- ➤ If driver overvoltage alarm (Er120) occurs, please use an external regenerative resistor with lower resistance or connect another resistor in parallel.

Please take following precautions before installing an external regenerative resistor.

- 1. Please set the correct resistance value in Pr0.16 and resistor power rating Pr0.17 for the external regenerative resistor.
- 2. Please ensure the resistance value is higher or equals to the recommended values in table 2-3. Regenerative resistors are generally connected in series but they can also be connected in parallel to lower the total resistance.
- 3. Please provided enough cooling for the regenerative resistor as it can reach above 100°C under continuous working conditions.
- 4. The min. resistance of the regenerative resistor is dependent on the IGBT of the regenerative resistor circuit. Please refer to the table above.

Theoretical selection of regenerative resistor

Without external loading torque, the need for an external regenerative resistor can be determined as the flow chart below

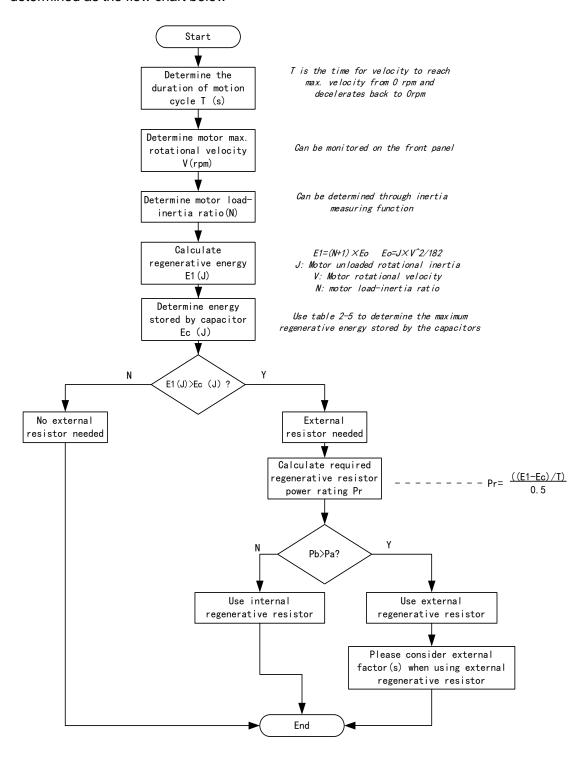
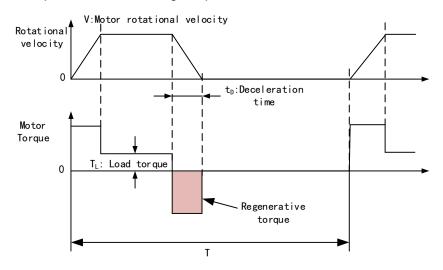



Diagram below shows the acceleration and deceleration cycle periods and the regenerative torque that occurs during the process.

Steps to calculate capacity of regenerative resistor

Steps	Calculation	Symbol	Formula
1	Servo system regenerative energy	E1	E1=(N+1)×J×V ² /182
2	Depleted energy from loss of load system during acceleration	EL	$E_L = (\pi/60) \text{ V} \times T_L \times \text{tD}$ If loss is not determined, please assume $E_L = 0$.
3	Depleted energy due to motor coil resistance.	Ем	$E_M=(U^2/R)\times tD$ R= coil resistance, U = operating voltage If R is not determined, please assume $E_M=0$.
4	Energy stored by internal DC capacitors	Ec	Please refer to table 2-5
5	Depleted energy due to regenerative resistance	Εĸ	E _K =E1-(EL+EM+EC), If loss is ignored, EK=E1-EC
6	Required power rating of regenerative resistor	Pr	Pr=E _K /(0.5×T)

Internal capacitor capacity and rotor inertia

EL8-EC Drivers	Servo motor	Rotor Inertia (x 10 ⁻⁴ kg.m ²)	Max. regenerative energy stored in capacitor Ec(J)
400W	ACM2-06004H2	0.58	13.47
750W	ACM2-08008H2	1.66	22.85
10001//	ACM8010M2	1.79	27.74
1000W	ACM13010M2	8.5	21.14

There are motors with low, medium and high inertia. Different motor models have different rotor inertia. Please refer to product catalogue for more information on rotor inertia. Calculation examples:

Servo drive: EL8-EC750F, Servo Motor: ACM2-08008H2. When T = 2s, rotational velocity = 3000rpm, load inertia is 5 times of motor inertia.

EL8-EC Drivers	Servo motor	Rotor Inertia (x 10 ⁻⁴ kg.m ²)	Max. regenerative energy stored in capacitor Ec(J)
750W	ACM2-08008H2	1.66	22.85

Regenerative energy produced:

E1 =
$$\frac{(N+1) \times J \times V^2}{182}$$
 = $\frac{(5+1) \times 1.66 \times 3000^2}{182}$ = 49.3J

If E1<Ec, internal capacitors can't take in excessive regenerative energy, regenerative resistor is required.

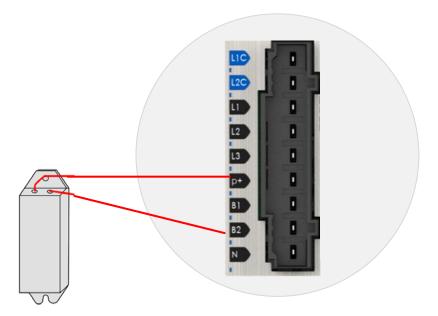
Required regenerative resistor power rating Pr:

$$Pr = \frac{(E1 - Ec)}{0.5T} = \frac{49.3 - 22.85}{0.5 \times 2} = 26.45W$$

Hence, with the internal regenerative resistor Pa = 75W, Pr<Pa, no external regenerative resistor is required.

Let's assume if the load inertia is 15 times of motor inertia, Pr = 108.6W, Pr>Pa, external regenerative resistor is required. And to consider for harsh working environment,

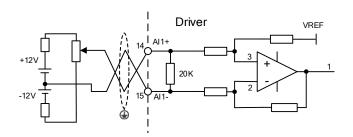
When selecting the resistance of the regenerative resistor, please be higher than the minimum value recommended in table 2-3 but lower than Rmax


Rmax =
$$(380^2-370^2)/Pr=7500/108.6=69\Omega$$

In conclusion, a regenerative resistor with resistance 40Ω - 70Ω and power rating 110W to 180W can be chosen.

Please take note that theoretical calculations of the regenerative resistance is not as accurate as calculations done under normal operation.

Regenerative resistor connection

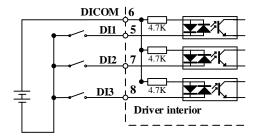

- ➤ If B1 and B2 are connected, internal regenerative resistor is now functional; if an external regenerative resistor is required, please disconnect B1 and B2 and connect P+ to B1 to prevent overcurrent.
- Please do not connect external regenerative resistor directly to N or it might cause fire hazard.
- Please refer to the section above to select minimum allowable resistance for the external regenerative resistor or it might damage the driver.
- ➤ Please confirm Pr0.16 and Pr0.17 before using any regenerative resistor.
- > Do not set the regenerative resistor near any flammable object.

2.16 I/O Signal

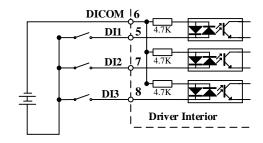
2.16.1 Analog input signal

CN1 Pin	Signal	Description
14	Al1+	Differential
15	Al1-	Differential,
23	Al2+	Input voltage: ±10VDC, Input resistance: 20kΩ
24	Al2-	input resistance. 20kt2

If variable resistor or resistor is needed, please refer to following diagram.

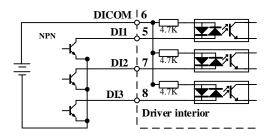

2.16.2 Common digital input

The internal circuit of common input is a bidirectional optocoupler which supports common anode and common cathode configurations. There are 2 types of outputs from master device: Relay output and Open Collector output as shown below.

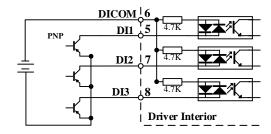


(1) Output from master device: Relay

Common anode:



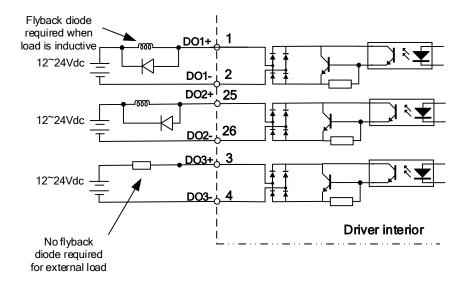
Common cathode:

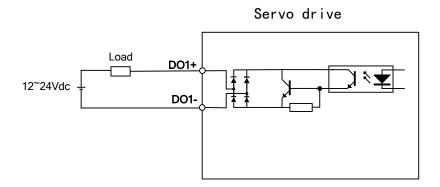


(2) Output from master device: Open Collector

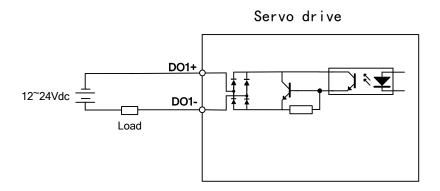
NPN configuration:

PNP configuration:


Please prepare switching power supply with output of 12-24VDC, current≥ 100mA;

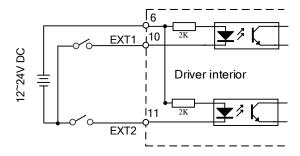

2.16.3 Common digital output

There are 3 digital outputs which are double-ended, having an isolated 24v power supply.


Double-ended output DO1-DO3

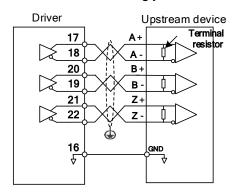
NPN configuration DO1-DO3

PNP configuration DO1-DO3


Power supply is provided by user. Please be aware that reversed power supply polarity might cause damage to the driver.

- When it is an open collector output, max current: 50mA, max supplying voltage: 25V. Please ensure the switching power supply fulfills the conditions.
- If the load is an inductive load such as a relay, please connect a flyback diode in parallel in reverse. A wrong installation of the flyback diode might cause damage to the driver.
- ➤ Pin 12, 40 and 41 are 2 single ended outputs; pin 11+10 and 35+34, pin 37+36 and 39+38 are 2 double ended outputs.

2.16.4 Probe input


EL8-EC series servo drives use DI5 and DI6 as probe input terminals. DI5/DI6 is default as probe function if no other function is assigned to them. Internal circuit is a bidirectional optocoupler.

2.16.5 Encoder crossover frequency output

Pin	Signal	Description		
17	A+	Motor encoder A-phase crossover		
18	A-	frequency output		
20	B+	Motor encoder B-phase crossover	Differential,	
19	В-	frequency output	High≥2.5VDC, Low≤0.5VDC,	
21	Z+	Motor encoder Z-phase crossover		
22	Z-	frequency output		
16	GND	Open collector signal ground		

When upstream device uses differential receiving, please install terminal resistor between differential input circuits. Set resistance accordingly.

2.16.6 Digital Input Signal Settings

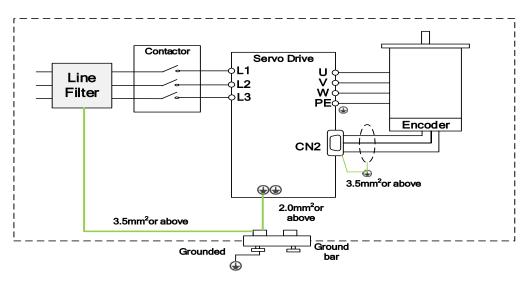
CN1 PIN	Signal	Parameter	Default function	Default status
6	DI-COM	-	Common DI	-
5	DI1	Pr4.00	-	Normally open
7	DI2	Pr4.01	РОТ	Normally open
8	DI3	Pr4.02	NOT	Normally open
9	DI4	Pr4.03	HOME-SWITCH	Normally open
10	DI5	Pr4.04	-	Normally open
11	DI6	Pr4.05	-	Normally open
12	DI7	Pr4.06	-	Normally open
13	DI8	Pr4.07	-	Normally open

- When limit switch or emergency stop is used, POT, NOT and E-STOP signal will be normally close (NC) by default. Please make sure there is no safety concern if these signals need to be set to normally open (NO).
- ➤ Servo drive power on signal (SRV-ON) is set as normally open (NO) as default. Please make sure there is no safety concern if this signal needs to be set to normally close (NC).
- If a same function is assigned to multiple pins, Er210 might occur.

2.16.7 Digital Output Signal Settings

CN1	Signal	Parameter	Function
1	DO1+	Pr4.10	External break released
2	DO1-	P14.10	BRK-OFF
25	DO2+	Dr.4.44	Servo Ready
26	DO2-	Pr4.11	S-RDY
3	DO3+	Pr4.12	Servo Alarm
4	DO3-	F14.12	(ALARM)

> Digital output functions can be assigned to multiple pins at the same time.

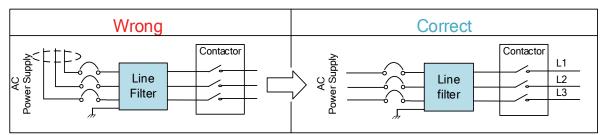


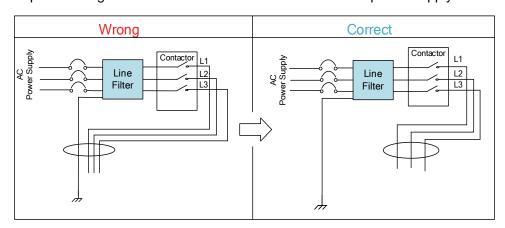
2.17 Measures against electromagnetic interference

To reduce interference, please take the following measures:

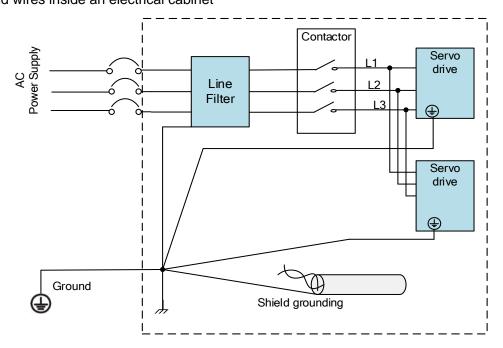
- I/O signal cable > 3m; Encoder cable > 20m
- Use cable with larger diameter for grounding
 - (1)Grounding resistance > 100Ω
 - (2) When there are multiple drivers connected in parallel, PE terminal of the main power supply and ground terminal of servo drives must be connected to copper ground bar in the electrical cabinet and the copper ground bar needs to be connected to the metal frame of the cabinet.
- Please install a line filter on main power supply cable to prevent interference from radio frequency.
- In order to prevent malfunctions caused by electromagnetic interference, please take following measures:
 - 1 Install master device and line filter close to the servo drive
 - Install surge suppressor for relay and contactor
 - §Please separate signal/encoder cable from power cable with a space of at least
 30cm
 - ♦ Install a line filter for the main power supply if a device with high frequency generation such as a welding machine exists nearby

2.17.1 Grounding connection and other anti-interference wiring connections


- Servo motor frame should be grounded. Please connect the PE terminal of servo motor and servo drive and ground them together to reduce interference.
- > Ground both ends of the foil shield of encoder cable.


2.11.2 Using line filter

To reduce interference from main power supply cable and to prevent from affecting other sensitive components around the servo drive, please choose a line filter based on actual supply current. Please do be aware of the following mistake when installing a line filter.


Do not band the main power supply cable together.

Separate the ground wire from the line filter and the main power supply cable.

Ground wires inside an electrical cabinet

Chapter 3 Parameter

3.1 Parameter List

Panel Display as follows:

Parameter Valid Mode

CSP: Valid in cyclic synchronous position mode CSV: Valid in cyclic synchronous velocity mode CST: Valid in cyclic synchronous torque mode

HM: Valid in homing mode

PP: Valid in profile position mode PV: Valid in profile velocity mode PT: Valid in profile torque mode

F: Valid in ALL modes

3.1.1 Servo drive parameter

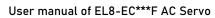
Class	Label	EtherCAT Address	Panel display	Activation			٧	alid N	lode		
	Model-following bandwidth	2000h	PR_000	Immediate							F
	Control Mode Settings	2001h	PR_001	After restart							F
	Real time Auto Gain Adjusting	2002h	PR_002	Immediate							F
	Real time auto stiffness adjusting	2003h	PR_003	Immediate							F
တ္ထ	Inertia ratio	2004h	PR_004	Immediate							F
ţi	Command polarity inversion	2006h	PR_006	After restart							F
Basic settings	Probe signal polarity	2007h	PR_007	After restart							F
asi	settings										
	Command pulse counts per revolution	2008h	PR_008	After restart	P P	P V		H M	CSP	CSV	
[Class 0]	Encoder pulse output per revolution	2011	PR_011	After restart							F
	Pulse output logic inversion	2012	PR_012	After restart							F
	1 st Torque Limit	2013h	PR_013	Immediate							F
	Excessive Position	004.41	DD 04.1		Р			Н	005		
	Deviation Settings	2014h	PR_014	Immediate	P			М	CSP		
	Absolute Encoder settings	2015h	PR_015	After restart							F
	Regenerative resistance	2016h	PR_016	Immediate							F

	User man	r manual of EL8-EC***F AC Servo									
Class	Label	EtherCAT Address	Panel display	Activation			١	/alid M	lode		
	Regenerative resistor power rating	2017h	PR_017	Immediate							F
	Friction compensation setting	2019h	PR_019	Immediate							F
	EtherCAT slave ID	2023h	PR_023	After restart							F
	Source of slave ID	2024h	PR_024	After restart							F
	Synchronous compensation time 1	2025h	PR_025	After restart					CSP		
	Synchronous compensation time 2	2026h	PR_026	After restart					CSP		
	Synchronization mode										
	command delay cycle	2027h	PR_027	After restart					CSP		
	counts										
	CSP mode safe self-running position setting	2028h	PR_028	Immediate					CSP		
	Encoder feedback mode	2030h	PR_030	Immediate							F
	External encoder type	2031h	PR_031	After restart							F
	External encoder direction	2032h	PR_032	After restart							F
	Excessive hybrid deviation	2033h	PR_033	After restart							F
	Clear excess hybrid control deviation	2034h	PR_034	After restart							F
	External encoder frequency divider numerator	2035h	PR_035	After restart							F
	External encoder frequency divider denominator	2036h	PR_036	After restart							F
	External encoder feedback pulse count per revolution	2037h	PR_037	After restart							F
	Z-signal pulse input source	2038h	PR_038	After restart							F
	1 st position loop gain	2100h	PR_100	Immediate	P P			H M	CSP		
	1 st velocity loop gain	2101h	PR_101	Immediate							F
	1 st Integral Time Constant of Velocity Loop	2102h	PR_102	Immediate							F
	1 st velocity detection filter	2103h	PR_103	Immediate							F
nents	1 st Torque Filter Time Constant	2104h	PR_104	Immediate							F
djustr	2 nd Position Loop Gain	2105h	PR_105	Immediate	P P			H M	CSP		
a a	2 nd velocity loop gain	2106h	PR_106	Immediate							F
[Class 1] Gain adjustments	2 nd Integral Time Constant of Velocity Loop	2107h	PR_107	Immediate							F
as:	2 nd velocity detection filter	2108h	PR_108	Immediate							F
<u> </u>	2 nd Torque Filter Time Constant	2109h	PR_109	Immediate							F
	Velocity feed forward gain	2110h	PR_110	Immediate	P P			H M	CSP		
	Velocity feed forward filter time constant	2111h	PR_111	Immediate	P P			H M	CSP		
	Torque feed forward gain	2112h	PR_112	Immediate	P P	P V		H M	CSP	CSV	

Class	Label	EtherCAT Address	Panel display	Activation	Valid Mode						
	Torque feed forward filter time constant	2113h	PR_113	Immediate	P P	P V		H M	CSP	CSV	
	Position control gain switching mode	2115h	PR_115	Immediate							F
	Position control gain switching level	2117h	PR_117	Immediate							F
	Hysteresis at position control switching	2118h	PR_118	Immediate							F
	Position gain switching time	2119h	PR_119	Immediate							F
	External ABZ encoder filter time	2136h	PR_136	Immediate	P P				CSP		
	Special function registry	2137h	PR_137	Immediate							F
	Special function registry 1	2138h	PR_138	Immediate							F
	Special function registry 2	2139h	PR_139	Immediate							F
	Adaptive filtering mode settings	2200h	PR_200	Immediate							F
	1 st notch frequency	2201h	PR_201	Immediate							F
	1 st notch bandwidth selection	2202h	PR_202	Immediate							F
	1 st notch depth selection	2203h	PR_203	Immediate							F
	2 nd notch frequency	2204h	PR_204	Immediate							F
suppression	2 nd notch bandwidth selection	2205h	PR_205	Immediate							F
pre	2 nd notch depth selection	2206h	PR_206	Immediate							F
d n	3 rd notch frequency	2207h	PR_207	Immediate							F
	3 rd notch bandwidth selection	2208h	PR_208	Immediate							F
ibra	3 rd notch depth selection	2209h	PR_209	Immediate							F
>	1 st damping frequency	2214h	PR_214	Immediate							F
S 2	2 nd damping frequency	2216h	PR_216	Immediate							F
[Class 2] Vibratio	Position command smoothing filter	2222h	PR_222	Keep stop							F
	Position command FIR filter	2223h	PR_223	Disable	Р			Н	CSP		
	5 th resonant frequency	2231h	PR_231	Immediate	P P P			H M	CSP		
	5 th resonant Q value	2232h	PR_232	Immediate							F
	5 th anti-resonant frequency	2233h	PR_233	Immediate							F
	5 th anti-resonant Q value	2234h	PR_234	Immediate							F
	6 th resonant frequency 6 th resonant Q value	2235h 2236h	PR_235 PR_236	Immediate Immediate							F
	6 resonant Q value 6th anti-resonant frequency	2236n 2237h	PR_236 PR_237	Immediate							F
	6 th anti-resonant Q value	2238h	PR_238	Immediate							F
	Adjustment mode	2248h	PR_248	Immediate							F

		User manual of EL8-EUnning AU Servo									
Class	Label	EtherCAT Address	Panel display	Activation			V	alid N	lode		
	MFC type	2250h	PR_250	Immediate							F
	Velocity feedforward compensation coefficient	2251h	PR_251	Immediate	P P			H M	CSP		
	Torque feedforward compensation coefficient	2252h	PR_252	Immediate	P P	P V		H M	CSP	CSV	
	Dynamic friction compensation coefficient	2253h	PR_253	Immediate							F
	Overshoot time coefficient	2254h	PR_254	Immediate							F
	Overshoot suppression gain	2255h	PR_255	Immediate		_					F
	Acceleration time settings	2312h	PR_312	Immediate		P V				CSV	
	Deceleration time settings	2313h	PR_313	Immediate		P V				CSV	
ntrol	Sigmoid acceleration/deceleration settings	2314h	PR_314	Disable		P V				CSV	
ty co	Zero speed clamp level	2316h	PR_316	Immediate		P V				CSV	
loci	Position mode zero speed	2323h	PR_323	Immediate		P V				CSV	
[Class 3] Velocity control	Position comparison 1 target value	2332h	PR_332	Immediate							F
[Clas	Position comparison 2-42 target value	2333h- 2373h	PR_333- PR_373	Immediate							F
	Position comparison 1-42 attribute value	2374h- 2394h	PR_374- PR_394	Immediate							F
	Input selection DI1	2400h	PR_400	Immediate							F
	Input selection DI2	2401h	PR_401	Immediate							F
	Input selection DI3	2402h	PR_402	Immediate							F
	Input selection DI4	2403h	PR_403	Immediate							F
	Input selection DI5	2404h	PR_404	Immediate							F
	Input selection DI6	2405h	PR_405	Immediate							F
	Input selection DI7 Input selection DI8	2406h 2407h	PR_406 PR_407	Immediate Immediate							F
	Output selection DO1	240/11 2410h	PR_410	Immediate							F
	Output selection DO2	2411h	PR_411	Immediate							F
	Output selection DO3	2412h	PR_412	Immediate							F
	Analog input 1 zero drift	2422h	PR_422	Immediate							F
	Analog input 1 filter	2423h	PR_423	Immediate							F
	Analog input 1 overvoltage	2424h	PR_424	Immediate							F
	Analog input 2 zero drift	2425h	PR_425	Immediate							F
	Analog input 2 filter	2426h	PR_426	Immediate							F
	Analog input 2 overvoltage	2427h	PR_427	Immediate							F
	Positioning complete range	2431h	PR_431	Immediate	P P			H M	CSP		
	Positioning complete output setting	2432h	PR_432	Immediate	P P			H M	CSP		
	INP positioning delay time	2433h	PR_433	Immediate	P P			H M	CSP		F

Class	Label	EtherCAT Address	Panel display	Activation	Valid Mode				
	Zero speed	2434h	PR_434	Immediate					F
	Velocity coincidence range	2435h	PR_435	Immediate		P V		CSV	
	Arrival velocity	2436h	PR_436	Immediate		P V		CSV	
	Motor power-off delay time	2437h	PR_437	Immediate					F
	Delay time for holding brake release	2438h	PR_438	Immediate					F
	Holding brake activation velocity	2439h	PR_439	Immediate					F
SE	Emergency stop function	2443h	PR_443	Immediate					F
i ii	AO1 output	2464h	PR_464	Immediate					F
sei	AO1 signal	2465h	PR_465	Immediate					F
ing	AO1 amplification	2466h	PR_466	Immediate					F
[Class 4] I/0 monitoring settings	AO1 communication settings	2467h	PR_467	Immediate					F
0	AO1 offset	2468h	PR_468	Immediate					F
1 [7	AO2 output	2469h	PR_469	Immediate					F
55	AO2 signal	2470h	PR_470	Immediate					F
<u> </u>	AO2 amplification	2471h	PR_471	Immediate					F
	AO2 communication settings	2472h	PR_472	Immediate					F
	AO2 offset	2473h	PR_473	Immediate					F
	Warning indicator light 1 signal	2474h	PR_474	Immediate					F
	Warning indicator light 2 signal	2475h	PR_475	Immediate					F
	Warning indicator light 3 signal	2476h	PR_476	Immediate					F
	Warning indicator light 4 signal	2477h	PR_477	Immediate					F
	Warning indicator light 5 signal	2478h	PR_478	Immediate					F
	Driver prohibition input settings	2504h	PR_504	Immediate					F
	Servo-off mode	2506h	PR_506	After restart					F
	Main power-off detection time	2509h	PR_509	Immediate					F
	Servo-off due to alarm mode	2510h	PR_510	After restart					F
	Servo braking torque setting	2511h	PR_511	Immediate					F


Class	Label	EtherCAT Address	Panel display	Activation	Valid Mode					
	Overload level setting	2512h	PR_512	Immediate						F
	Overspeed level settings	2513h	PR_513	Immediate						F
	I/O digital filter	2515h	PR_515	Immediate						F
	Counter clearing input mode	2517h	PR_514	Immediate						F
	Position unit settings	2520h	PR_520	After restart	P P			H M	CSP	
	Torque limit selection	2521h	PR_521	Immediate						F
	2 nd torque limit	2522h	PR_522	Immediate						F
	LED initial status	2528h	PR_528	After restart						F
Sf	Torque limit detection time during torque initialization	2537h	PR_537	Immediate						F
i <u>i</u>	3 rd torque limit	2539h	PR_539	Immediate						F
seti	D41 set value	2540h	PR_540	Immediate						F
sion s	Frequency divider output – Z-signal polarity	2542h	PR_542	After restart						F
[Class 5] Extension settings	Frequency divider output – Z-signal width	2543h	PR_543	After restart						F
s 5] E	Frequency divider output source	2544h	PR_544	After restart						F
[Clas	External encoder overspeed feedback threshold	2545h	PR_545	Immediate						F
	Vent overload level	2546h	PR_546	Immediate						F
	Enable position comparison	2570h	PR_570	Immediate						F
	Position comparison mode	2571h	PR_571	Immediate						F
	Position comparison pulse output bandwidth	2572h	PR_572	Immediate						F
	Position comparison output delay offset	2573h	PR_573	After restart						F
	Position comparison starting point	2574h	PR_574	Immediate						F
	Position comparison end point	2575h	PR_575	Immediate						F
	No. of cycles for N cycle comparison	2576h	PR_576	Immediate						F
	Position comparison – Set current position as origin	2577h	PR_577	Immediate						F
	Position comparison - offset to origin	2578h	PR_578	Immediate						F
	Encoder zero position compensation	2601h	PR_601	After restart						F
	JOG trial run torque command	2603h	PR_603	Immediate						F
	JOG trial run velocity command	2604h	PR_604	Immediate	P P			H M	CSP	
	Position 3 rd gain valid time	2605h	PR_605	Immediate	P P			H M	CSP	
	Position 3 rd gain scale factor	2606h	PR_606	Immediate	P P			H M	CSP	

Class	Label	EtherCAT Address	Panel display	Activation		V	alid N	lode	
	Torque command additional value	2607h	PR_607	Immediate					F
	Positive direction torque compensation value	2608h	PR_608	Immediate					F
	Negative direction torque compensation value	2609h	PR_609	Immediate					F
	Current response settings	2611h	PR_611	Immediate					F
	Max. time to stop after disabling	2614h	PR_614	Immediate					F
	Trial run distance	2620h	PR_620	Immediate					F
sbi	Trial run waiting time	2621h	PR_621	Immediate					F
attir	No. of trial run cycles	2622h	PR_622	Immediate					F
a S(Trial run acceleration	2625h	PR_625	Immediate					F
Extr	Velocity observer gain	2628h	PR_628	Immediate					F
[Class 6] Extra settings	Velocity observer bandwidth	2629h	PR_629	Immediate					F
<u>"</u>	Frame error window time	2634h	PR_634	Immediate					F
	Frame error window	2635h	PR_635	Immediate					F
	Absolute value rotation mode denominator setting	2654h	PR_654	After restart	P P		H M	CSP	
	Rotor blocked torque limit threshold	2656h	PR_656	Immediate					F
	Z-signal sustaining time	2661h	PR_661	Immediate					F
	Absolute multiturn data upper limit	2663h	PR_663	After restart					F

3.1.2 Manufacturer parameter

Index	Sub inde x	Label	Unit	Default	Min	Max	Details
	01	RPDO length		8	0	64	
	02	TPDO length		17	0	64	
	03	The number of RPDO		1	0	4	
5004	04	The number of TPDO		1	0	2	
	05	Sync0 Watchdog counter		0	0	65535	
	06	Reserved			0	65535	
	07	Sync0 Watchdog limit		4	0	65535	73B alarm threshold value, set to zero shield

						USEI III	alluat Oi	LL0-LC	F AC Servo
	08	Sync0 Drift watchdog counter		0	0	65535	;		
	09	Sync0 Drift watchdog limit		4	0	65535		alarm threero shield	eshold value, set
	0A	SM2 watchdog counter		0	0	65535			
	0B	SM2 Watchdog limit		4	0	65535		alarm threero shield	eshold value, set
	0C	Application layer SM2/Sync0 watchdog counter		0					
	0D	Application layer SM2/Sync0 watchdog limit		4					
	0E	Reserved			0	500			
	0F	Time interval between SM2 and Sync0	ns	0	0	10000	I X'Y'	n Alarm de	etection
5006	00	Synchronous alarm setting		0xFFF F	0	0xFFF F	Bit1: Bit2: Bit3: Bit4: Bit5: Bit6: Bit7: Bit8: Bit9:	819h 81Ah 824h 825h Reserved Reserved 82Ch 82Dh 832h 0~15: Res	d
5010	00	PDO watchdog overtime	ms	0	0	60000	0: ii > 0: Unit: Such	nvalid; valid; ms; as RPD0 n, TPD0 ti	O timeout alarm meout alarm
5012	04	Homing setting	-	5	0: Bit1: pu 0: Bit2/Bit3 Bit2 0 1 Bit4: De and low	invalid; all back invalid; b: Bit Pi 3 lir po 1 60 2- al with 0 speed of	signal p 1: va f overtra 1: va ositive nit osition 07D-0 + 07C 07D-0 07D-0 Overtrav during he	Negati ve limit positio n 607D-01 - 607C 607D-01 el betwee oming pro	final stop Feedback after the homing prod 6064 = 607C 6064 = 0 n the high speed cess 41h bit13=1);

User manual of EL8-EC***F AC Servo										
					1: As n	ormal, cor	ntinue homing process			
5400	01	Set synchronization cycle minimum value	us	250	125	1000				
5400	02	Set synchronization cycle maximum value	us	10000	4000	20000				
	01	Absolute encoder multiturn number	r	-	-	-	-			
	02	Encoder single turn position	Pulse	-	-	-	-			
	03	Encoder feedback position 32 bit low	Pulse	-	-	-	-			
	04	Encoder feedback position 32 bit high	Pulse	-	-	-	-			
5500	05	The actual mechanical position 32 bit low	Unit	-	-	-	-			
	06	The actual mechanical position 32 bit high	Unit	-	-	-	-			
	07	Number of encoder communication exceptions		-	-	-	-			
	01	Motor Speed	r/min	-	-	_	-			
	02	Speed of position command	r/min	-	-	-	-			
	03	Speed command	r/min	-	-	-	-			
	04	Actual torque	0.1%	-	-	-	-			
	05	Torque command	0.1%	-	-	-	-			
	06	Relative position error	Pulse	-	-	-	-			
	07	Internal position command	Pulse	-	-	-	-			
5501	80	Overload ratio	0.1%	-	-	-	-			
0001	09	Discharge load rate	0.1%	-	-	-	-			
	0A	Inertia ratio	%	-	-	-	-			
	0B	Actual positive torque limit value	0.1%	-	-	-	-			
	0C	Actual negative torque limit value	0.1%	-	-	-	-			
	0D	U phase current detect value	0.1%	-	-	-	-			
	0E	W phase current detect value	0.1%	-	-	-	-			
	01	DI input signal	-	-	-	-	-			
	02	SO output signal	-	-	-	-	-			
5502	03	Reserved	-	-	-	-	-			
	04	Reserved	-	-	-	-	-			
	05	Bus voltage	V	-	-	-	-			

	06 Temperature		°C	-	-	-	-
	07	Power on time	S	-	-	-	-

3.1.3 Motion parameter starting with object dictionary 6000

Index	Sub-index	Label	Unit	Default	Min	Max	Mode
603F	0	Error code	-	0x0	0x0	0xFFFF	F
6040	0	Control word	-	0x0	0x0	0xFFFF	F
6041	0	Status word	-	0x0	0x0	0xFFFF	F
605A	0	Quick stop option code	-	2	0	7	F
605B	0	Motor deceleration-stopping mode selection	-	0	0	1	F
605C	0	Axis disabled-stopping mode selection	-	0	0	1	F
605D	0	Pause-stopping mode selection	-	1	1	3	F
605E	0	Alarm - stopping mode selection	-	0	0	2	F
6060	0	Operation mode selection	-	8	1	11	F
6061	0	Operation mode display	-	0	0	10	F
6062	0	Position command	Comman d unit	0	-21474 83648	214748 3647	CSP/P P/HM
6063	0	Actual internal position	Encoder unit	0	-21474 83648	214748 3647	F
6064	0	Actual position feedback	Comman d unit	-	-21474 83648	214748 3647	F
6065	0	Position deviation window	Comman d unit	30000	0	214748 3647	PP/CS P/HM
6066	0	Position deviation detection time	ms	10	0	65535	PP/CS P/HM
6067	0	Position window	Comman d unit/s	0	0	214748 3647	PP/CS P/HM
6068	0	Position window time	ms	0	0	65535	PP/CS P/HM
606B	0	Internal command velocity	Comman d unit/s	0	-21474 83648	214748 3647	CSV/P V
606C	0	Velocity feedback	Comman d unit/s	0	-21474 83648	214748 3647	PP/CS P/HM
606D	0	Velocity window	Comman d unit /s	10	0	65535	PV/CS V
606E	0	Velocity window time	ms	0	0	65535	PV/CS V
606F	0	Zero-speed threshold	Comman d unit/s	10	0	65535	PV/CS V
6071	0	Target torque	0.001	0	-32768	32767	CST/P T
6072	0	Maximum torque	0.001	3000	0	65535	F
6073	0	Maximum current	0.001	3000	-	65535	F

				OSCI IIIGIIG	at of LLO-L	J I AC JEI	
6074	0	Internal command torque	0.001	0	-32768	32767	F
6075	0	Motor current rating	mA	3000	0	214748 3647	F
6077	0	Actual torque	0.1%	0	-32768	32767	F
6079	0	DC bus voltage	mV	0	0	214748 3647	F
607A	0	Target position	Comman d unit	0	-21474 83648	214748 3647	CSP/P P
607C	0	Homing position offset	Comman d unit	0	-21474 83648	214748 3647	НМ
607D	1	Min. software limit	Comman d unit	0	-21474 83648	214748 3647	CSP/P P
007D	2	Max. software limit	Comman d unit	0	-21474 83648	214748 3647	CSP/P P
607E	0	Motor rotational direction	-	0x0	0x0	0xFF	F
607F	0	Maximum protocol velocity	Comman d unit /s	21474 83647	0	214748 3647	PP/HM /PV/C ST
6080	0	Maximum motor velocity	r/min	6000	0	214748 3647	F
6081	0	Profile velocity	Comman d unit /s	10000	0	214748 3647	PP
6083	0	Profile acceleration	Comman d unit /s²	10000	1	214748 3647	PP/PV/
6084	0	Profile deceleration	Comman d unit /s²	10000	1	214748 3647	PP/PV
6085	0	Emergency stop deceleration	Comman d unit /s²	10000 000	1	214748 3647	CSP/C SV/PP/ PV/HM
6087	0	Torque slope	0.001/s	5000	1	214748 3647	PT
608F	1	Encoder resolution	Encoder unit	0	0	214748 3647	F
6091	1	Electronic gear ratio numerator	r	1	1	214748 3647	F
0091	2	Electronic gear ratio denominator		1	1	214748 3647	F
6092	1	Number of pulses per rotation	Comman d unit/r	10000	1	214748 3647	F
6098	0	Homing method	-	19	-6	37	НМ
6099	1	High velocity homing	Comman d unit /s	10000	0	214748 3647	НМ
	2	Low velocity homing	Comman d unit /s	5000	0	214748 3647	НМ
609A	0	Homing acceleration /deceleration	Comman d unit /s²	50000 0	1	214748 3647	НМ
60B0	0	Position feedforward	Comman d unit	0	-21474 83648	214748 3647	CSP
60B1	0	Velocity feedforward	Comman d unit /s	0	-21474 83648	214748 3647	CSP/C SV/PP/ PV/HM
60B2	0	Torque feedforward	0.001	0	-32768	32767	F

User manual of EL8-EC***F AC Servo

		1	1		at or ELO-E			
60B8	0	Probe function	-	0x0	0x0	0xFFFF	F	
60B9	0	Probe status	-	0x0	0x0	0xFFFF	F	
60BA	0	Probe 1 rising edge	Comman	0	-21474	214748	F	
UUDA	0	captured position	d unit	U	83648	3647	Г	
60BB	0	Probe 1 falling edge	Comman	0	-21474	214748	F	
UUDD		captured position	d unit		83648	3647	<u>г</u>	
60BC	0	Probe 2 rising edge	Comman	0	-21474	214748	F	
OOBC	U	captured position	d unit	U	83648	3647	Г	
60BD	0	Probe 2 falling edge	Comman	0	-21474	214748	F	
0000	U	captured position	d unit		83648	3647	Г	
60C5	0	Protocol maximum	Comman	10000	4	214748	F	
6005	0	acceleration	d unit /s²	0000	1	3647	F	
6006	0	Protocol maximum	Comman	10000	4	214748	F	
60C6	0	deceleration	d unit /s²	0000	1	3647	F	
6005	0	Probe 1 rising edge		0	0	GEE2E	F	
60D5		captured count(s)	-	0	0	65535	F	
CODO	0	Probe 1 falling edge		0		65535		
60D6	0	captured count(s)	-	0	0	65535	F	
0007	0	Probe 2 rising edge				05505		
60D7	0	captured count(s)	-	0	0	65535	F	
CODO	0	Probe 2 falling edge			0	65525		
60D8		captured count(s)	-	0	0	65535	F	
0050	0	Max. torque in positive	0.001	2000	0	65525	Е	
60E0	0	direction	0.001	3000	0	65535	F	
0054	_	Max. torque in negative	0.004	0000	_	05505	_	
60E1	0	direction	0.001	3000	0	65535	F	
60F4	0	Actual following error	Comman	0	-21474	214748	CSP/P	
	0	Actual following GITUI	d unit	0	83648	3647	P/HM	
60FA	0	Position loop velocity output	Comman d unit /s	0	-21474 83648	214748 3647	CSP/P P/HM	
60FC		Internal commend resition	Encoder	0	-21474	214748	CSP/P	
BUFC	0	Internal command position	unit	0	83648	3647	P/HM	
60FD	0	Input status	-	0x0	0x0	0x7FFF FFFF	F	
60FE	1	Output valid	-	0x0	0x0	0x7FFF FFFF	F	
	2	Output enabled	-	0x0	0x0	0x7FFF FFFF	F	
60FF	0	Target velocity	Comman d unit /s	0	-21474 83648	214748 3647	CSV/P V	
6500	0	Cupported aparation mades	a dilit/3	0.40		0x7FFF		
6502	0	Supported operation modes	-	0x0	0x0	FFFF	F	

3.2 Parameter Function

Panel Display as follows:

Parameter valid under following modes

CSP: Cyclic synchronous position mode CSV: Cyclic synchronous velocity mode CST: Cyclic synchronous torque mode

HM: Homing mode

PP: Profile position mode PV: Profile velocity mode PT: Profile torque mode

F: All modes

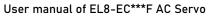
3.2.1 【Class 0】 Basic Settings

	Label	Model-following bandwidth			Valid Mode							F
Pr0.00	Range	0~5000	Unit	0.1Hz	Default	1	Inde				2000h	1
	Activation	Immediate										
	Model-following bandwidth, also known as model-following control (MFC), is used to control the											

Model-following bandwidth, also known as model-following control (MFC), is used to control the position loop to improve the responsiveness to commands, speed up positioning time and reduce following error. The effect is obvious especially in low and medium mechanical stiffness.

Value	Explanation
0	Disable the function.
1	Enable the function to set bandwidth automatically, recommended for most applications. Pr0.00=Pr1.01
2	Reserved
3-9	Invalid

Pr0.00>9: Model-following bandwidth value set by Pr0.00.


10<Pr0.00<5000: Specifies the bandwidth.

*Recommended settings for belt application: 30<Pr0.00<100.

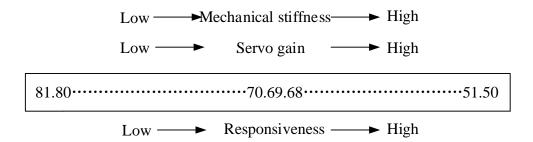
	Label Control Mode Settings				Valid Mode							F
Pr0.01	Range	0~9 Unit —		Default	9		Index			2001h		
	Activation	After restart	After restart									

Set value to use following control modes:

Value	Content	Details					
0-8	Reserved	Reserved					
9	EtherCAT mode	PP/PV/PT/HM/CSP/CSV/CST					

Real time Auto Gain Label Valid Mode Adjusting Pr0.02 0x0~0xFFF Range Unit 0x001 2002h Default Index Activation **Immediate**

		real time auto g							
Data	Category	Settings	Application						
bits									
		motion character recommended to special requirer	tion setting mode, which can be selected according to the eristics or setting requirements. Generally, it is to select mode 1 with good generality when there is no ment, mode 2 when rapid positioning is needed If mode 1 mode the requirements, please choose mode 0.						
	Motion setting mode	0:Manual	and accordingly.						
0x00_		1:Standard	Pr0.03 valid. Quick gain adjusting can be achieved by changing Pr0.03 stiffness value. Gain switching is not used in this mode, suitable for applications with requirements for stability.						
		2:Positioning	Pr0.03 valid. Quick gain adjusting can be achieved by changing Pr0.03 stiffness value. This mode is suitable for applications requiring quick positioning. Not recommended for load mounted vertical to ground, or please compensate for the load using Pr6.07						
	Load type setting	Used to select t mechanical stru	he load type, choose according to load-inertia ratio and acture.						
0x0_0		0: Rigid structure	This mode prioritizes system responsiveness. Use this mode when there is a relatively rigid structure with low load inertia. Typical application including directly connected high-precision gearbox, lead screw, gears, etc.						
		1:High inertia	For applications with higher load inertia (10 times or above), gain settings take into account both machine stability and responsiveness. Not recommended to set stiffness above 15 for high load inertia.						
		2: Flexible structure	This mode prioritizes system stability. Use this mode when there is low rigidity structure with high load inertia. Typical applications included belts and chains.						
0x_00	reserved								



The setting type				f-
The semina type	complipation is a	nexadecimai	standard	as tollows.
THE SELLING LYPE	oominament to a	IIOAGGGGIIIGI	otaliaala,	ao ionowo.

Setting type	Application type
combination	
0X000	Rigid structure Manual
0X001	Rigid structure +Standard
0X002	Rigid structure +Positioning
0X010	High inertia + Manual
0X011	High inertia + Standard
0X012	High inertia + Positioning
0X020	Flexible structure + Manual
0X021	Flexible structure
	+Standard
0X022	Flexible structure
	+Positioning

D-0.02	Label Real time auto stiffness adjusting		Mode					F		
Pr0.03	Range	50 ~ 81	Unit	_	Default	70	Index		2003h	Ì
	Activation	Immediate								

Valid when Pr0.03 = 1,2

Lower values ensure better system responsiveness and mechanical stiffness but machine vibration might occur, please set accordingly.

	Label	Inertia ratio			Mode							F
Pr0.04	Range	0~2000 0	Unit	%	Default	250		Inde	ex		2004h	1
	Activation	Immediate										

Pr0.04=(load inertia/motor rotational inertia)×100%

Notice:

Set inertia ratio according to actual load inertia. When both are uniform, actual motor velocity loop responsiveness and gain settings will be consistent. If inertia ratio is greater than actual value, velocity loop gain settings will be higher and vice versa.

User manual of EL8-EC***F AC Servo

Pr0.06	Label	Command polarity inversion			Mode							F
	Range	0 ~ 1 Unit —		Default	0 Index		2006h		1			
	Activation	After restart										
	I local to also me the restational direction of the restar											

Used to change the rotational direction of the motor.

Set value	Details
0	Polarity of the command is not inversed. The direction of rotation is
0	consistent with the polarity of command.
4	Polarity of command is inversed. The direction of rotation is opposite to
1	the polarity of command.

Note: Rotational direction of the motor is recommended to be set through object dictionary 607E. However, Pr0.06 has higher priority than object dictionary 607E. 607E only takes effect when Pr0.06 = 0.

D.0.07	Label	Probe signal polarity settings			Mode							F
Pr0.07	Range	0 ~ 3	Unit	_	Default	3		Index			2007h	1
	Activation	After restart										

Probe signal polarity settings take effect when Pr0.01 = 9

Set value	Details					
0	Probe 1 & 2 polarity inversion					
1	Probe 2 polarity inversion					
2	Probe 1 polarity inversion					
3	No polarity inversion for probe 1 & 2					

If Pr0.01 ≠ 9, Pr0.07 = Command pulse input mode settings.

Command pulse input

Command Polarity inversion (Pr0.06)	Command pulse input mode settings (Pr0.07)	Command Pulse Mode	Positive signal	Negative signal
[0]	0 or 2	90°phase difference 2 phase pulse (Phase A+ Phase B)	A	tl tl
	1	CW pulse sequence + CCW pulse sequence	t2 t2	t2 t2

	[3]	Pulse sequence + Directional symbol	t4 t5 t6 t6 t6 t6
	0	90°phase difference	
	or 2	2 phase pulse (Phase A+Phase	В
	2	B)	
		CW pulse	
1		sequence	
	1	+	t2 t2
		CCW pulse	12 t2
		sequence	
		Pulse sequence	
	3	+	t4 t5
		Directional symbol	t6 t6 t6 t6

Command pulse input signal max. frequency and min. duration needed

Command pul	se input interface	Max.	N	⁄lin. du	ration	neede	d (µs))
Command pui	se input interface	Frequency	t1	t2	t3	t4	t5	t6
Pulse	Differential drive	500 kHz	2	1	1	1	1	1
sequence	Open collector	200 kHz	5	2.5	2.5	2.5	2.5	2.5
interface	Open collector							

Please set >0.1µs for the duration between rising and falling edge of command pulse input signal.

1 revolution with 2500 pulses 2-phase pulse input when Pr0.07=0 or 2, Pr0.08 = 10000;

1 revolution with 10000 pulses 1-phase pulse input when Pr0.07=1 or 3, Pr0.08 = 10000

	Label	Command p		ounts	Mode						F	
Pr0.08	Range	0~838860 8	Uni t	P-	Default	0	Index		:	2008h	I	
	Activation	After restart										
	Pulses per revo higher priority.	lution can be	set usi	ng objec	t dictionary 608	F, 609	1, 6092. H	oweve	r, Pr	0.08 h	as	

	Label	Encoder pul revolution	se out	put per	Mode						F
Pr0.11	Range	0~65535	Uni t	P/r	Default	2500	C	Index	2	2011	
	Activation	After restart									

Including rising and falling edge of phase A and B, so encoder actual differential output pulse count = $Pr0.011 \times 4$

Please make sure: Motor rotational speed x Pr0.11 x 4≤1MHz. If exceeds, alarm Er280 might occur.

	Label	Pulse outpu inversion	t logic		Mode						F
Pr0.12	Range	0~1	Uni t	-	Default	0		Index] :	2012	
	Activation	After restart					•				

To set phase B logic and output source from encoder pulse output.

Pulse output logic inversion

Pr0.12	Phase B logic	CW direction	CCW direction
[0]	Not inverted	A-phase B-phase	A-phase B-phase
[1]	Inverted	A-phase B-phase	A-phaseB-phase

	Label	1 st Torque	e Limit		Mode					F	
Pr0.13	Range	0~500	Unit	%	Default	300	Index		2	2013h	
	Activation	Immedia	te								
	1 st torque limit is		t according to ratio percentage of motor rated current. Do not exceed m								

Actual torque limit is the smaller value of Pr0.13 and object dictionary 6072

D=0.44	Label	Excessive Deviation			Mode	PP		НМ	CS P		
Pr0.14	Range	0~500	Unit	0.1rev	Default	30	In	dex		2014h	1
	Activation	Immediat	е								

Please set threshold value for position deviation accordingly. Default factory setting = 30, Er180 will be triggered if positive deviation is in excess of 3 revolutions.

	Label	Absolute	Encoder	settings	Mode	PP		НМ	CS P		
Pr0.15	Range	0~3276 7	Unit	-	Default	0	Index	K		2015h	
	Activation	Immediat	е								

0: Incremental mode:

Used as an incremental encoder. Doesn't retain position data on power off. Unlimited travel distance.

1: Multiturn linear mode:

Used as a multiturn absolute encoder. Retrain position data on power off. For applications with fixed travel distance and no multiturn data overflow.

2: Multiturn rotary mode:

Used as a multiturn absolute encoder. Retrain position data on power off. Actual data feedback in between 0-(Pr6.63). Unlimited travel distance.

3: Single turn absolute mode:

Used when travel distance is within 1 revolution of the encoder. Data overflow will trigger alarm.

- **5:** Clear multiturn alarm and activate multiturn absolute function. Will switch to multiturn mode once alarm cleared, if remains at 5 after 3s, please solve according to Er153.
- **9:** Clear multiturn position, reset multiturn alarm and activate multiturn absolute function. Will switch to multiturn mode once alarm cleared, if remains at 9 after 3s, please solve according to Er153. Please disable axis before setting to 9 and home the axis before using.

	Label Regenerative re				Mode					F
Pr0.16	Range	40~500	Unit	Ohm	Default	100	Index		2016h	
	Activation	Immediate)							
	To set resistanc	e value of re	alue of regenerative resistor							

	Label	Regenera power rati		tor	Mode					F
Pr0.17	Range	20~500 0	Unit	W	Default	50	Index		2017h	1
	Activation	Immediate	Э							

To set power rating of regenerative resistor.

Pr0.16 and Pr0.17 determines the threshold value of Er 120. Please set accordingly or it might trigger false alarm or damage to servo driver.

Note: If external regenerative resistor is used, please set according to its labeled power rating.

	Label	Friction co setting	mpensation	on	Mode					F
Pr0.19	Range	0~1000	Unit	-	Default	0	Index	2	2019h	1
	Activation	Immediate	Э							

Friction compensation setting = 0, default = 1;

Friction compensation setting = x, indicating x+1/10000 of friction compensation runway;

	Label	EtherCAT	slave ID		Mode					F		
Pr0.23	Range	0~3276 7	Unit		Default	2	Index		2023h	ı		
	Activation	After resta	art									
	Set ID number of	f the slave	station ur	nder Ethe	rCAT mode							
	Label	Source of	f slave ID		Mode					F		
Pr0.24	Range	_	Default	1	Index		2024h	1				
	Activation											
	Activation After restart											

0: Master device automatically assigns a slave address.

1: The slave ID = Pr0.23

D=0.25	Label	Synchron compensa		1	Mode			CS P		
Pr0.25	Range	1~100	Unit	0.1us	Default	10	Index		2025h	
	Activation	After resta	art							

-,	 	 	

	D=0.26	Label	Synchron compensa		2	Mode			F	S		
	Pr0.26	Range	1~2000	Unit	0.1us	Default	50 Index				026h	
		Activation	After resta	art								
ſ												

Synchronous dithering compensation range. Used for master device with poor synchronization.

Pr0.27	Label	Synchroni command counts			Mode				CS P		
	Range	1~50	Unit	-	Default	0	Ind	ex		2027h	
	Activation	After resta	art								

Driver delays N position loop cycle counts to receive position command from master device. To solve motor jitter caused by master device with poor synchronization.

	Label	CSP mode self-runnir		n setting	Mode				CS P		
Pr0.28	Range	0~1000 0	Unit	-	Default	10	Ind	lex		2028h	
	Activation								•		

Synchronous dithering compensation range. Used for master device with poor synchronization.

	Label	Encoder fo	eedback r	node	Mode					F
Pr0.30	Range	0~1	Unit	-	Default	0	Index		2030h	
	Activation	Immediat	е							

To set encoder feedback source.

Set value	Description
[0]	Feedback from motor (Internal) encoder
1	Use under full closed loop control, external encoder feedback

					USEI IIIali	uat or i	LLO-LC	F AC 3	=1 VU		
	Label	External e	encoder ty	/pe	Mode						F
Pr0.31	Range	0~3	Unit	-	Default	0	Ir	ıdex		2031h	Í
	Activation	Immediat	е								
	Set value			Desc	cription						
	[0]	ABZ end	oder								
	1~3	Reserve	d for futu	re upgrad	les						
										•	
	Label	External e	ncoder d	irection	Mode						F
Pr0.32	Range	0~1	Unit	-	Default	0	Ir	idex		2032h	i
	Activation	Immediat	е								
	Set value			Desc	cription						
	[0]	Default of	direction								
	1	Inversed	direction	1							
		T					1				
	Label	Excessive	hybrid d	eviation	Mode	PP		H	CS P		
Pr0.33	Range	0~1342 17728	Unit	Comma nd unit	Default	160	00 Ir	ıdex		2033h	
	Activation	After rest	art			•	,				
	To set the excess loop control. Fac exceeds 16000 p	tory defaul	t: 16000.		•			• •			
D**0.24	Label	Clear hyb deviation	rid contro	I	Mode	PP		H M	CS P		
Pr0.34	Range	0~100	Unit	R	Default	0	Ir	ıdex		2034h	1
	Activation	After rest	art								
	To set condition to	to clear pos	sition dev	riation und	der hybrid contr	ol mo	de (Ful	l closed	loop)		
	Set value			Des	cription						
	[0]	OFF									
	1~100	Revolution count to clear hybrid control deviation									
		T				T	1	,	T		
B 0.05	Label	External e divider nu		equency	Mode						F
Pr0.35	Range	0~2 ²³	Unit	-	Default	0	Ir	dex		2035h	ı
	Activation	After rest	art		•	•					
	When Pr0.35 = 0), numerato	or = resol	ution of e	ncoder						

D=0.26	Label	External e			Mode					F
Pr0.36	Range	0~2 ²³	Unit	-	Default	0	In	dex	2036l	ſ
	Activation	After rest	art							
	When Pr0.37 = 0, External encoder feedba			edback p	ulse count per re	evoluti	on = Pr	r0.36		

D-0.07	Label	External e			Mode					F	
Pr0.37	Range	0~2 ³¹	Unit	-	Default	0	Index		2	2037h	
	Activation	After rest	art								
	Set value			Puls	e count						
	[0]			Pı	r0.36			X			
	1~2 ³¹			Pı	r0.37						

	Label		Z-signal p	ulse input	source	Mode							F
Pr0.38	Range		0~3	Unit	-	Default	0		Index		2	2038h	1
	Activation		After resta	art									
	Set value	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				Bit 0 (Homing Z-	Signa	ıl)					
	[0]	Motor Z-signal				Motor Z-signal							
	1	Мо	tor Z-signa	ıl		External encode	External encoder Z-signal						
	2	External encoder Z-signal			nal	Motor Z-signal							
	3 External encoder Z-signal		nal	External encode	r Z-sią	gnal							

3.2.2 【Class 1】 Gain Adjustments

	Label	1 st positio	n loop ga	in	Mode	PP		НМ	CS P		
Pr1.00	Range	0~3000 0	Unit	0.1/s	Default	320	Index	Κ		2100h	1
	Activation	Immediat	Immediate								
	1.11										

Higher position loop gain value improves the responsiveness of the servo driver and lessens the positioning time.

Position loop gain value shouldn't exceed responsiveness of the mechanical system and take in consideration velocity loop gain, if not it might cause vibration, mechanical noise and overtravel. As velocity loop gain is based on position loop gain, please set both values accordingly.

Recommended range: 1.2≤Pr1.00/Pr1.01≤1.8

	Label	1 st velocity	y loop ga	in	Mode					F
Pr1.01	Range	1~3276 7	Unit	0.1Hz	Default	180	Index		2101h	1

Activation Immediate

To determine the responsiveness of the velocity loop. If inertia ratio of Pr0.04 is uniform with actual inertia ratio, velocity loop responsiveness = Pr1.01.

To increase position loop gain and improve responsiveness of the whole system, velocity loop gain must be set at higher value. Please notice that if the velocity loop gain is too high, it might cause vibration.

	Label	1 st Integra		onstant	Mode					F
Pr1.02	Range	1~1000 0	Unit	Default	310	Index	2	2102h		
	Activation	Immediate	9							

If auto gain adjusting function is not enabled, Pr1.02 is activated.

The lower the set value, the closer the lag error at stop to 0 but might cause vibration. If the value set is overly large, overshoot, delay of positioning time duration and lowered responsiveness might occur.

Set 10000 to deactivate Pr1.02.

Recommended range: 50000≤PA1.01xPA1.02≤150000

For example: Velocity loop gain Pr1.01=500(0.1Hz), which is 50Hz. Integral time constant of velocity loop should be 100(0.1ms)≤Pr1.02≤300(0.1ms)

	Label	1 st velocit	y detection	n filter	Mode					F
Pr1.03	Range	0~1000 0	Unit		Default	15	Index		2103h	
	Activation	Immediate	е							

This filter is a low pass filter. It blocks high frequencies which cause system instability from velocity feedback data. The higher the set value, lower frequencies will be blocked and velocity responsiveness will also be lowered. Pr1.03 needs to match velocity loop gain. Please refer to the following table.

Set Value	Velocity Detection Filter Cut-off	Set Value	Velocity Detection Filter Cut-off
	Frequency(Hz)		Frequency(Hz)
0	2500	16	750
1	2250	17	700
2	2100	18	650
3	2000	19	600
4	1800	20	550
5	1600	21	500
6	1500	22	450
7	1400	23	400
8	1300	24	350
9	1200	25	300
10	1100	26	250
11	1000	27	200
12	950	28	175
13	900	29	150
14	850	30	125
15	800	31	100

	Label	1 st Tord Constan	•	er Time	Mode			F
Pr1.04	Range	0~250 0	Unit	0.01ms	Default	126	Index	2104h
	Activation	Immedia	ate					

To set torque command low-pass filter, add a filter delay time constant to torque command and filter out the high frequencies in the command.

Often used to reduce or eliminate some noise or vibration during motor operation, but it will reduce the responsiveness of current loop, resulting in undermining velocity loop and position loop control. Pr1.04 needs to match velocity loop gain.

Recommended range: 1,000,000/(2π×Pr1.04) ≥Pr1.01×4

For example: Velocity loop gain Pr1.01=180(0.1Hz) which is 18Hz. Time constant of torque filter should be Pr1.01≤221(0.01ms)

If mechanical vibration is due to servo driver, adjusting Pr1.04 might eliminate the vibration. The smaller the value, the better the responsiveness but also subjected to machine conditions. If the value is too large, it might lower the responsiveness of current loop.

With higher Pr1.01 value settings and no resonance, reduce Pr1.04 value;

With lower Pr1.01 value settings, increase Pr1.04 value to lower motor noise.

	Label	2 nd Positio	n Loop	Gain	Mode	PP			НМ	CS P		
Pr1.05	Range	0~30000	Unit	0.1/s	Default	380		Index	(2105h)
	Activation	Immediate	9									
	Label	2 nd veloci	ty loop (gain	Mode							F
Pr1.06	Range	1~32767	Unit	0.1Hz	Default	180		Index	(2106h	1
	Activation	Immediate	е									
	Label	2 nd Integr Constant Loop		Mode							F	
Pr1.07	Range	1~1000 0	Unit	0.1ms	Default	1000	00	Index	(2107h	1
	Activation	Immediat	е									
	Label	2 nd velo	city d	Mode							F	
Pr1.08	Range	0~31 Unit —			Default	15		Index	(2108h	1
	Activation	Immediate										

					0361 11	ialiuat of LL	U-LC I AC SE	11 40
	Label	2 nd Torqu Constant		Time	Mode			F
Pr1.09	Range			Default	126	Index	2109h	
	Activation	Immedia	te					
	Position loop, ve	• •		-	n filter, torque	e comman	d filter eachha	ave 2 pairs of

	Label	Velocity gain	feed	forward	Mode	PP		HM C	S	
Pr1.10	Range	0~1000	Unit	0.10%	Default	300	Index	K	2110h	1
	Activation	Immediat	е							

Used for decreasing following error caused by low responsiveness of velocity loop. Might cause overshoot or increase in noise if set value is too high.

	Label	Velocity filter time		forward nt	Mode	PP		HM CS	6	
Pr1.11	Range	0~6400	Unit	0.01ms	Default	50	Index	(2111h	
	Activation	Immediat	е							

Set velocity feed forward low pass filter to eliminate high or abnormal frequencies in velocity feed forward command. Often used when position command with low resolution or high electronic gear ration to smoothen velocity feed forward.

Position deviation under constant velocity can be lowered with higher velocity feed forward gain.

Please to refer to the equation below.

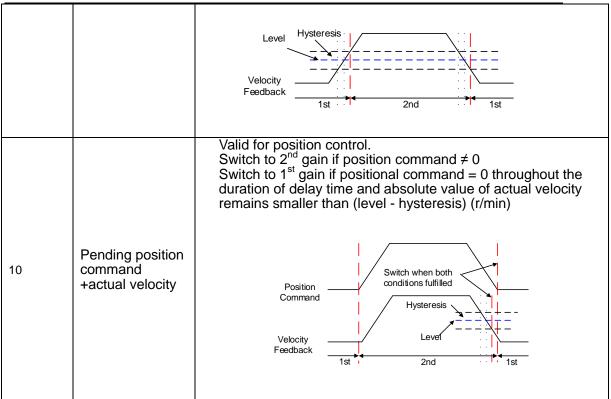
 $\frac{Set \ velocity[\frac{Uint}{s}]}{Position \ loop \ gain[Hz]} \ x \ \frac{100 - Velocity \ feed \ foward \ gain[\%]}{100}$ Position deviation[Uint]=

	Label	Torque gain	feed	forward	Mode	PP	PV	НМ	CS P	CS V		
Pr1.12	Range	0~100 0	Unit	0.1%	Default	0		Index		2	112h	1
	Activation	Immedia	te									

Before using torque feed forward, please set correct inertia ratio. By increasing torque feed forward gain, position deviation on constant acceleration/deceleration can be reduced to close to 0. Under ideal condition and trapezoidal speed profile, position deviation of the whole motion can be reduced to close to 0. In reality, perturbation torque will always exist, hence position deviation can never be 0.

	Label	Torque filter time	feed e consta	forward ant	Mode	PP	PV	НМ	CS P	C	S	
Pr1.13	Range	0~640 0	Unit	0.01ms	Default	0		Index			2113h	
	Activation	Immedia	ite									

Low pass filter to eliminate abnormal or high frequencies in torque feed forward command. Usually used when encoder has lower resolution or precision.


Noise reduces if torque feed forward filter time constant is set higher but position deviation will increase at acceleration varied points.

		Label			on control	gain	Mode						F
Pr1.1	5	Range		0~11	Unit	_	Default	0	Ind	ex		2115	5h
		Activat	ion	Imme	diate								
	Se Va		Condition		Gain swi	tching c	ondition						
	0		1 st gain fixe	d		•	gain(Pr1.00-Pr1	•					
	1		2 nd gain fixe	ed	Fixed on	using 2 nd	gain (Pr1.05-Pi	r1.09)					
	2		Reserved										
	3 High set			que	larger Switch	than (leve to 1 st ga	win when set torcel + hysteresis)[in when set torquel + hysteresis Acceleration Constant Speed	%] ue comn)[%]	nand	absol	lute va	alue lue	
	4		Reserved		Reserved								
	5 High set velocity				Switch larger Switch	to 2 nd ga than (leve to 1 st ga	n and velocity co nin when set velo el + hysteresis)[in when set velo vel-hysteresis)[r	ocity com r/min] ocity com					

	1	User manual of EL8-EUnning AU Servo
		Level Hysteresis Set Velocity 1st 2nd 1st
6	Large position deviation	Valid for position control. Switch to 2 nd gain when position deviation absolute value larger than (level + hysteresis)[pulse] Switch to 1 st gain when position deviation absolute value smaller than (level-hysteresis)[pulse]
7	Pending position command	Valid for position control. Switch to 2 nd gain if position command ≠ 0 Switch to 1 st gain if position command remains = 0 throughout the duration of delay time.
8	Not yet in position	Valid for position control. Switch to 2 nd gain if position command is not completed. Switch to 1 st gain if position command remains uncompleted throughout the duration of delay time.
9	High actual velocity	Valid for position control. Switch to 2 nd gain when actual velocity absolute value larger than (level + hysteresis)[r/min] Switch to 1 st gain when actual velocity absolute value remains smaller throughout the duration of delay time than (level-hysteresis)[r/min]

For position control mode, set Pr1.15=3,5,6,9,10; For velocity control mode, set Pr1.15=3,5,9;

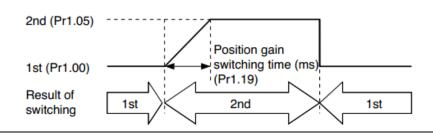
** Above 'level' and 'hysteresis' are in correspondence to Pr1.17 Position control gain switching level and Pr1.18 Hysteresis at position control switching.

Pr1.17	Label	Position of switching	_	ain	Mode						F			
	Range	0~2000 0	Unit	Mode dependent	Default	50	Index			2117h	I			
	Activation	Immediat	Immediate											
	Set threshold val	ue for gain	switchir	ng to occur										

Unit is mode dependent.

Switching condition	Unit
Position	Encoder pulse count
Valacity	RPM
Velocity	RPIVI
Torque	%

Please set level ≥ hysteresis



	Label	Hysteresis at position control switching			Mode							F
_	Range	0~2000 0	Unit	Default	33		Index			2118h	ı	
	Activation	Immediat	е									
	To eliminate the i	•			with	Pr1.17	usin	g the	same	unit.		

Pr1.19	Label	Position (gain swi	tching	Mode					F
	Range	0~1000 0	Unit	0.1ms	Default	33	Index		2119h	
	Activation	Immediat	е							

During position control, to ease torque changes and vibration due to rapid changes in position loop gain, set suitable Pr1.19 value

For example: 1st (pr1.00) <-> 2nd (Pr1.05)

Pr1.36	Label	External All time	3Z encod	er filter	Mode	PP		CS P					
	Range	0~300 Unit 0.01us			Default	20	Inc	ex		2136	3h		
	Activation	Immediate	mmediate										
	To set filter tim	e for externa	al ABZ er	ncoder									

	Label	Special fur	nction reg	istry 2	Mode			F
Pr1.39	Range	0-0xFFF F	Unit	0.01us	Default	0	Index	2139h
	Activation	Immediate						
	Set value							
	[0]	Reserved						
	1	=1, activate	full close	d loop du				
	2	=1, hybrid po	osition de					

3.2.3 【Class 2】 Vibration Suppression

Pr2.00	Label	Adaptive settings	e filtering	g mode	Mode						F		
	Range	0~4	Unit	-	Default	0	Index			2200h	1		
	Activation	Immedia	Immediate										

Set value		Explanation
0	Adaptive filter: invalid	Parameters related to 3 rd and 4 th notch filter remain unchanged
1	Adaptive filter: 1 filter valid for once.	1 adaptive filter becomes valid. 3 rd notch filter related parameters updated accordingly. Pr2.00 switches automatically to 0 once updated.
2	Adaptive filter: 1 filter remains valid	1 adaptive filter becomes valid. 3 rd notch filter related parameters will keep updating accordingly.
3-4	Reserved	-

	Label	1 st notc	h frequen	су	Mode							F		
-	Range	50~40 00	Unit	Hz	Default	4000	0	Index			2201h			
	Activation	Immedi	Immediate											
	Set center freque Set Pr2.01 to 400	•	•		notch filter.									

Pr2.02	Label	1 st no selection	otch ba on	Mode					F	
	Range	0~20	Unit	-	Default	4	Index		2202h	1
	Activation	Immedi	ate							

Set notch bandwidth for 1st resonant notch filter.
Under normal circumstances, please use factory default settings. If resonance is under control, in combination with Pr2.01 and Pr2.03, Pr2.02 can be reduced to improve current loop responsiveness which allows higher mechanical stiffness settings.

	Label	1 st notch	depth se	lection	Mode			F
Pr2.03	Range	0~99	Unit	-	Default	0	Index	2203h
	Activation	Immedia	te				·	

Set notch depth for 1st resonant notch filter.

Under normal circumstances, please use factory default settings. If resonance is under control, in combination with Pr2.01 and Pr2.02, Pr2.03 can be reduced to improve current loop responsiveness which allows higher mechanical stiffness settings.

	Label	2 nd notch f	requenc	у	Mode						F
Pr2.04	Range	50~4000	Unit	Hz	Default	4000) 1	Index		2204h	
-	Activation	Immediate)								
	Cat agretantina	and and			natala filtan						

Set center frequency of 2nd torque command notch filter.

Set Pr2.04 to 4000 to deactivate notch filter

	Label	2 nd no selection		ndwidth	Mode						F
_	Range	0~20	Unit	-	Default	4	Index	(2205h	I
	Activation	Immediate									

Set notch bandwidth for 2nd resonant notch filter.

Under normal circumstances, please use factory default settings. If resonance is under control, in combination with Pr2.04 and Pr2.06, Pr2.05 can be reduced to improve current loop responsiveness which allows higher mechanical stiffness settings.

	Label	2 nd notch	depth se	election	Mode					F
Pr2.06	Range	0~99 Unit -			Default	0	Index		2206h	ı
Pr2.06	Activation	Immedia	te							

Set notch depth for 1st resonant notch filter.

When Pr2.06 value is higher, notch depth becomes shallow, phase lag reduces. Under normal circumstances, please use factory default settings. If resonance is under control, incombination with Pr2.04 and Pr2.05, Pr2.06 can be reduced to improve current loop responsiveness which allows higher mechanical stiffness settings.

	Label	3 rd notch f	requenc	;y	Mode						F
Pr2.07	Range	50~400 0	Unit	Hz	Default	4000)	Index		2207h	ſ
	Activation	Immediate									

Set center frequency of 3rd torque command notch filter.

Set Pr2.07 to 4000 to deactivate notch filter

Studio)

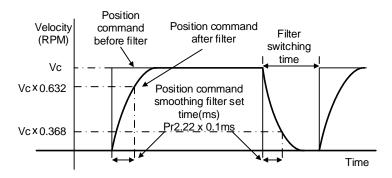
User manual of EL8-EC***F AC Servo

	Label	3 rd note selection	ch ba	andwidth	Mode			F				
_	Range	0~20										
	Activation	Immediate										
	Set notch bandwidth for 3 rd resonant notch filter. Under normal circumstances, please use factory default settings.											

	Label	3 rd notch	depth se	election	Mode							F
Pr2.09	Range	0~99	Unit	-	- Default 0 I						2206h	
F12.09	Activation Immediate											
Set notch depth for 1 st resonant notch filter.												
	When Pr2.09 value is higher, notch depth becomes shallow, phase lag reduces.											

	Label	1 st damp	ing freque	ency	Mode							F	
Pr2.14	Range	0~2000	Unit	0.1Hz	Default	0		Index		1	2214h	1	
	Activation Immediate												
0: Deactivate													
	To suppress wobble at load end. Often used when wobble of flexible structure due to high												

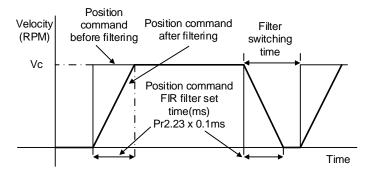
To suppress wobble at load end. Often used when wobble of flexible structure due to high deceleration upon stopping. Especially effective for wobble with frequencies under 100Hz. Set Pr2.15 to wobble frequency (wobble frequency can be determined using tracing function of Motion Studio)


	Label	2 nd damp	ing frequ	iency	Mode			F					
Pr2.16	Range	0~2000	0~2000 Unit 0.1Hz Default 0 Index										
	Range 0~2000 Unit 0.1Hz Default 0 Index 2216h Activation Immediate												
	0: Deactivate												
	To suppress wobble at load end. Often used when wobble of flexible structure due to high deceleration upon stopping. Especially effective for wobble with frequencies under 100Hz. Set Pr2.15 to wobble frequency (wobble frequency can be determined using tracing function of Motion												

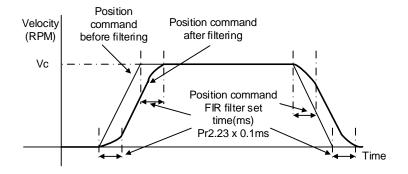
	Label	Position co		d	Mode	PP		H M	CS P		
Pr2.22	Range	0~32767	Unit	0.1ms	Default	0	Index	(2222h	1
	Activation	Stop axis									

To set time constant of 1 time delay filter of position command.

To set time constant of 1 time delay filter, according to target velocity Vc square wave command as show below.



Usually applied when there is rather sharp acceleration which might cause motor overshoot or undershoot. To smoothen command signal, reduces impact to machines and eliminate vibration. If Pr2.22 is set too high, overall time will be lengthened.



	Label	Position co	mmand F	IR filter	Mode	PP		H M	CS P		
Pr2.23	Range	0~10000	Unit	0.1ms	Default	0	Index			2223h	
	Activation	Disable axis									

As shown below, when target velocity Vc square wave command reaches Vc, it becomes trapezoidal wave after filtering.

As shown below, when target velocity Vc trapezoidal command reaches Vc, it becomes S wave after filtering.

Usually applied when there is rather sharp acceleration which might cause motor overshoot or undershoot. To smoothen command signal, reduces impact to machines and eliminate vibration. If Pr2.23 is set too high, overall time will be lengthened.

**Please wait for command to stop and after filter idle time to modify Pr2.23. Filter switching time = (Pr2.23 set value x 0.1ms + 0.25ms)

	Label	5 th resona	nt freque	ncy	Mode						F
Pr2.31	Range	50~400 0	Unit	Hz	Default	4000	0	Index		2231h	I
	Activation	Immediat	е								

To set zero-valued eigenfrequency of 5th resonant notch filter. Pr2.31 corresponds to machine specific resonant frequency.

Notch filter deactivated if Pr2.31 is set to any value.

	Label	5 th resona	nt Q valu	ie	Mode							F
Pr2.32	Range	0~1000 0	Unit	Hz	Default	0		Index			2232h	
	Activation	Immediat	е									
To set notch Q value of 5 th resonant notch filter												

	Label	5 th anti-reso	onant fre	equency	Mode							F
Pr2.33	Range	50~4000 0	Unit	Hz	Default	400	0	Index			2233h	
	Activation	Immediate	1									
To set zero-valued eigenfrequency of 5 th resonant notch filter. Pr2.31 corresponds to machine-specific anti-resonant frequency.												

	Label	5 th anti-reso	onant Q	value	Mode					F	
Pr2.34	Range	0~9900	Unit	Hz	Default	0	Inc	dex		2234h	
	Activation	Immediate							•		

To set resonant Q value of 5th resonant notch filter

	Label	6 th resona	nt freque	ncy	Mode							F	
Pr2.35	Range	50~400 0	Unit	Hz	Default	4000	0	Index			2235l	n	
	Activation	Immediat	е										
	To set zero-valued eigenfrequency of 6 th resonant notch filter, Pr2 35 corresponds to												

To set zero-valued eigenfrequency of 6" resonant notch filter. Pr2.35 corresponds to machine-specific resonant frequency.

Notch filter deactivated if Pr2.31 is set to any value.

	Label	6 th resona	nt Q valu	е	Mode			F			
Pr2.36	Range	0~1000 0	Unit	Hz	Default	0	Index	2236h			
	Activation	Immediate	е								
To set notch Q value of 6 th resonant notch filter											

	Label	6 th anti-reso	onant fre	equency	Mode				F			
Pr2.37	Range	50~4000 0	Unit	Hz	Default	4000	Index	(2237h			
	Activation	Immediate										
To set zero-valued eigenfrequency of 6 th resonant notch filter. Pr2.37 corresponds to machine-specific anti-resonant frequency.												

	Label	6 th anti-reso	onant Q	value	Mode						F	
Pr2.38	Range	0~9900	Unit	Hz	Default	0		Index			2238h	
	Activation	Immediate	1									
To set resonant Q value of 6 th resonant notch filter												

	Label	Adjustmen	ts mode		Mode							F
Pr2.48	Range	0~1	Unit	-	Default	0		Index			2248h)
	Activation	Immediate										
	To turn on/off	f automatic adju	ıstment	S								
	Set value			Desc	cription							
	[0]	Turn off autom	Furn off automatic adjustments									
	1	Activate auton vibration suppreaching 4 time	ression.	er								
		mechanical st		ngee								

	Label	N	MFC type			Mode	PP		CS P		
Pr2.50	Range	0	0~3	Unit	-	Default	0	Index		2250h	
	Activation	Α	After resta	rt							
	Set value										
	[0]	Mode	lel followin								
	1	Zero	tracking o								
	2	3 ine	ertia (future								
	3	Path	n following	(future							

					OSCI IIIdii	uu. 0. L.	-0 -0 -	, ,,,	<u> </u>		
	Label	Velocity compensat		dforward ficient	Mode	PP		CS P			
Pr2.51	Range	-10000~ 10000	Unit	-	Default	0	Inde	ex		2251h	I
	Activation	Immediate									

To compensate for velocity feedforward

Pr2.52Range-10000~ 10000UnitHzDefault0Index2252hActivationImmediate		Label	Torque compensati		dforward ficient	Mode	PP	PV		CS P	CS V		
Activation Immediate	_	Range		Unit	Hz	Default	0		Index			2252h	ı
		Activation	Immediate										

To compensate for torque feedforward

	Label	Dynamic compensat	ion coef	friction ficient	Mode					F
_	Range	0~1000	Unit	%	Default	0	Index		2253h	1
	Activation	Immediate								

To set ratio of rated torque/rated rotational speed, to compensate for dynamic friction during motion and have better control over acceleration/deceleration.

Dynamic friction coefficient

$$= \frac{|\text{Torque}(\text{Rotational speed 1}) - \text{Torque}(\text{Rotational speed 2})}{|\text{Rotational speed 1} - \text{Rotational speed 2}} * \text{rated rotational speed}$$

When there is an excess position deviation during acceleration/deceleration, please adjust Pr2.53 to reduce the deviation to 0.

	Label	Overshoot time coefficient			Mode							F
Pr2.54	Range	0~10000	Unit	-	Default	0		Index			2254h	
	Activation	Immediate										
To get a contravel time a conflicient												

To set overtravel time coefficient

	Label	Overshoot gain	sup	pression	Mode					F
Pr2.55	Range	0~1000	Unit	-	Default	0	Index		2255h	1
	Activation	Immediate								

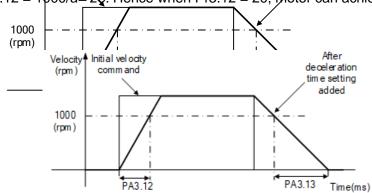
Suppression improves with larger set value but might affect the performance of MFC. Please use with caution for any value above 100.

3.2.4 【Class 3】 Velocity Control

	Label	Acceleration	Acceleration time settings				PV		CS V				
Pr3.12	Range	0~10000	Unit	ms/ (1000RPM)	Default	0 Index			2312h				
	Activation	Immediate	Immediate										
	Label	Deceleration	on time	settings	Mode		PV		CS V				
Pr3.13	Range	0~10000 Unit ms/ (1000RPM)			Default	0	Index		2313h				
	Activation	Immediate											

Set max acceleration/deceleration for velocity command.

If target velocity = x [rpm], max acceleration = a [unit: rpm/ms], acceleration time = t [ms]

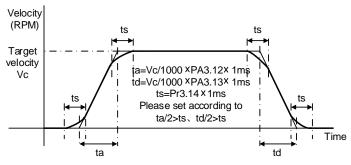

Pr3.12 = 1000/aPr3.13 = 1000/a

a = x/tVelocity Initial acceleration

With added acceleration deceleration

For example: If might is to achieve 1500rpm intitions setting \$500/30=50rpm/ms

Pr3.12 = 1000/a = 2Q. Hence when Pr3.12 = 20, protor can achieve 1500rpm in 30s.



Usually used when there is rapid acceleration or trapezoidal wave velocity command due to many different internal speed segments under velocity control mode which causes instable while motor in motion.

Under velocity control mode, 6083 and 6084 is limited by Pr3.12 and Pr3.13 correspondingly.

Pr3.14	Label	Sigmoid acceleration/deceleration settings			Mode		PV	cs v		
	Range	0~1000	Unit	ms	Default	0	Index	2314h		
	Activation	Axis disable)							
	To set sigmoid acceleration and deceleration turning point in accordance to Pr3.12 and Pr3.13.									

	Label	Zero speed clamp function selection			Mode						F		
Pr3.15	Range	0~3	Unit	-	Default	0	Index 23			2315h	1		
	Activation	Immediate											

Set value	Zero speed clamp function
0	Invalid: zero speed clamp deactivated
1	Velocity command is forced to 0 when the zero speed clamp (ZEROSPD) input signal is valid.
2	Velocity command is forced to 0 when actual velocity is lower than Pr3.16.
3	Includes conditions from 1 and 2

	Label	Zero speed clamp level			Mode	PV			CSV			
Pr3.16	Range	10~2000	Unit	RPM	Default	30	Index		2316h			
	Activation	Immediate										
	Velocity command is forced to 0 when actual velocity is lower than Pr3.16 and after static time set in Pr3.23								ic time set			

after time set in Pr3.23

User manual of EL8-EC***F AC Servo

								•				
	Label	Zero speed time	Zero speed clamp static time			0 Index				CSV		
Pr3.23	Range	0~32767 Unit ms De			Default				2323h			
	Activation	Immediate										
	To set delay time for zero speed clamp.											
	To prevent creeping at low speed, velocity command forced to 0 when velocity goes under Pr3.16											

	Label	Position cor target value	-	1-42	Mode							F
Pr3.32 – Pr3.73	Range	-2 ³¹ ~ 2 ³¹ Unit Comma nd unit Default 0 Index						2323h				
	Activation	Immediate										
	When target pos	ition(value) is	reached	d, positio	on comparison o	output	will b	oe dep	pende	ed on	the	
	position compari	son propertie	s value s	set.							_	
	Label	Position comparison 1 & 2			Mode							F

Pr3.74
Range 0~32767 Unit Comma nd unit Default 0 Index 2332h - 2373h
Activation Immediate

Bit	Position comparison 1
0	Positive traversal comparison. 0=OFF,1=ON
1	Negative traversal comparison. 0=OFF,1=ON
2~5	Reserved
	Output property settings:
6	=0: Pulse mode
	=1: Flipping mode
7	DO1
8	DO2
9	DO3
10~12	Reserved
13	Frequency divider Phase A output
14	Frequency divider Phase B output
15	Frequency divider Phase Z output

Bit	Position comparison 2
16	Positive traversal comparison. 0=OFF,1=ON
17	Negative traversal comparison. 0=OFF,1=ON
18~21	Reserved
22	Output property settings: =0: Pulse mode

	=1: Flipping mode	
23	DO1	
24	DO2	
25	DO3	
26~28	Reserved	
29	Frequency divider Phase A output	
30	Frequency divider Phase B output	
31	Frequency divider Phase Z output	

	Label	Position cor attributes va	•	х & у	Mode				F	
Pr3.75~ Pr3.94	Range	0x0~0xFF FFFFFF	Unit	-	Default	0	Index		2375h- 2394h	
	Activation	Immediate								
	x,y = (3,4), (5,6) bit 0~15: Positio Please refer to F	n comparison	comparison x; bit 16~31: Position comparison y							

3.2.5 【Class 4】 I/O Interface Setting

	Label	Input select	ion DI1		Mode			F
Pr4.00	Range	0x0~0xFF	Unit	_	Default	0x0	Index	2400h
	Activation	Immediate						
	Label	Input select	ion DI2		Mode			F
Pr4.01	Range	0x0~0xFF	Unit		Default	0x1	Index	2401h
	Activation	Immediate						
	Label	Input select	ion DI3		Mode			F
Pr4.02	Range	0x0~0xFF	Unit		Default	0x2	Index	2402h
	Activation	Immediate						
	Label	Input select	ion DI4		Mode			F
Pr4.03	Range	0x0~0xFF	Unit	_	Default	0x16	Index	2403h
	Activation	Immediate						
	Label	Input select	ion DI5		Mode			F
Pr4.04	Range	0x0~0xFF	Unit		Default	0x0	Index	2404h
	Activation	Immediate						
D::4 05	Label	Input select	ion D16		Mode			F
Pr4.05	Range	0x0~0xFF	Unit	_	Default	0x0	Index	2405h

	Activation	Immediate								
	Label	Input select	ion DI7		Mode			F		
Pr4.06	Range	0x0~0xFF	Unit	_	Default	0x4	Index	2406h		
	Activation	Immediate	mediate							
	Label	Input select	ion DI8		Mode			F		
Pr4.07	Range	0x0~0xFF	Unit	_	Default	0x0	Index	2407h		
	Activation	Immediate	nmediate							

Digital input DI allocation using hexadecimal system

		Set v	/alue	0x60FD(bit
Input	Symbol	Normally	Normally)
		open	close	,
Invalid	_	0h	•	×
Positive limit switch	POT	1h	81h	Bit1
Negative limit switch	NOT	2h	82h	Bit0
Clear alarm	A-CLR	4h	-	×
Forced alarm	E-STOP	14h	94h	×
Home switch	HOME-SWITCH	16h	96h	Bit2

- Please don't set anything other than listed in table above.
- · Normally open: Valid when input = ON Normally close: Valid when input = OFF
- Er210 might occur if same function is allocated to different channels at the same time
- · Channel that has no value doesn't affect driver motion.
- Front panel is of hexadecimal system.
- Pr4.00 Pr4.07 corresponds to DI1 DI8. External sensors can be connected if the parameters are all set to 0. Controller will read 60FD bit4 11 to get DI1 DI8 actual status.

	Label	Output sele	ction DC) 1	Mode				F
Pr4.10	Range	0x0~0xFF	Unit	_	Default	0x1	Index	<	2410h
	Activation	Immediate						·	
	Label	Output sele	ction DC)2	Mode				F
Pr4.11	Range	0x0~0xFF	Unit		Default	0x3	Index		2411h
	Activation	Immediate	Immediate						
	Label	Output sele	ction DC)3	Mode				F
Pr4.12	Range	0x0~0xFF	Unit	_	Default	0x4	Index	<	2412h
	Activation	Immediate							

Digital output DO allocation using hexadecimal system.

	Output	Symbol	Set	value
			Normally open	Normally close
Maste	r device control	_	00h	-
	Alarm	ALM	01h	81h
S	ervo-Ready	S-RDY	02h	82h

External brake released	BRK-OFF	03h	83h
Positioning completed	INP	04h	84h
At-speed	AT-SPEED	05h	85h
Torque limit signal	TLC	06h	86h
Zero speed clamp detection	ZSP	07h	87h
Velocity coincidence	V-COIN	08h	88h
Position command ON/OFF	P-CMD	0Bh	8Bh
Velocity limit signal	V-LIMIT	0Dh	8Dh
Velocity command ON/OFF	V-CMD	0Fh	8Fh
Servo status	SRV-ST	12h	92h
Homing done	HOME-OK	22h	A2h
Position comparison	CMP-OUT	14h	94h

Please don't set any other than the outputs listed in the table above.

- Normally open: Active low
- · Normally close: Active high
- Front panel is of hexadecimal system.
- Pr4.10 Pr4.12 corresponds to DO1 DO3. If all parameters are set to 0, master device controls the outputs, object dictionary 0x60FE sub-index 01 bit16-18 corresponds to DO1-DO3.

	l als al	A		.:¢ı	Mada	1					
	Label	Analog input 1	zero ai	rirt	Mode				F		
Pr4.22	Range	-32766~3276 6	Unit	0.3mv	Default	0	Index		2422h		
	Activation	Immediate									
	To set zero drif	t compensation v	/alue fo	or zero	drift correction.						
	Label	Analog input 1	filter		Mode				F		
Pr4.23	Range	0~6400	Unit	0.01m s	Default	0	Index	·	2423h		
	Activation	Immediate									
	To set a delay	filter time coeff	ficient	for Al1	input voltage.	When f	ilter time	takes e	ffect, input		
	voltage will be	will be smoothen.									
	Label	Analog input 1	nalog input 1 overvoltage Mode F								
Pr4.24	Range	0~100	~100 Unit 0.1V Default 0 Index 2424h								
	Activation	Immediate									
	When Pr4.23 =	= 0, Pr4.23 invali	d. Er27	70 migh	nt occur when t	he input	voltage of	Al1 is h	nigher than		
	the voltage after	er zero drift corre	ction.								
	Label	Analog input 2	zero dı	rift	Mode		_		F		
Pr4.25	Range	-32766-32766	Unit	-	Default	1	Index		2425h		
	Activation	Immediate									
	To set zero drif	t compensation v	/alue fo	or zero	drift correction.						
	Label	Analog input 2	filter		Mode				F		
Pr4.26	Range	0~6400	Unit	-	Default	1	Index		2426h		
	Activation	Immediate									
	To set a delay voltage will be	filter time coeff smoothen.	ficient	for Al1	input voltage.	When f	ilter time	takes e	ffect, input		

	Label	Analog filter 2 c	vervolt	age	Mode							F
Pr4.27	Range	0~100	Unit	-	Default	1		Index			2427h	l
	Activation	Immediate	ımediate									
	When Pr4.27 =	0, Pr4.27 invali	Pr4.27 invalid. Er270 might occur when the input voltage of Al1 is higher than									
	the voltage after	er zero drift corre	ero drift correction.									

	Label	Positionin range	g	complete	Mode	PP			H M	CS	SP		
Pr4.31	Range	0~1000 0	_ Unit		Default	20		Index		243	31h		
	Activation	Immediate	Э										
	To set position deviation range of INP1 positioning completed output signal.												

	Label	Positioning output setting		mplete	Mode	PP		H M	CSP	
Pr4.32	Range	0~4	Unit	-	Default	1	Index		2432	2h
	Activation	Immediate								

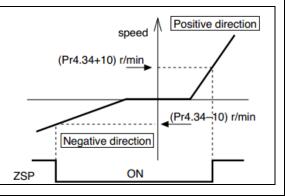
Output conditions of INP1 positioning completed output signal

Set value	Positioning completed signal
0	Signal valid when the position deviation is smaller than Pr4.31
1	Signal valid when there is no position command and position deviation is smaller than Pr4.31
2	Signal valid when there is no position command, zero-speed clamp detection (ZSP) signal is ON and the positional deviation is smaller than Pr4.31
3	Signal valid when there is no position command and position deviation is smaller than Pr4.31. Signal ON when within the time set in Pr4.33 otherwise OFF.
4	When there is no command, position detection starts after the delay time set in Pr4.33. Signal valid when there is no position command and positional deviation is smaller than Pr4.31.

	Label	INP positio	ning dela	ay time	Mode	PP	H	CSP		
Pr4.33	Pr4.33 Range 0-			1ms	Default	0	Index	2	433h	
	Activation	Immediate								

To set delay time when Pr 4.32 = 3

Set value	Positioning completed signal
0	Indefinite delay time, signal ON until next position command
1-15000	OFF within the time set; ON after time set. Switch OFF after receiving next position command.

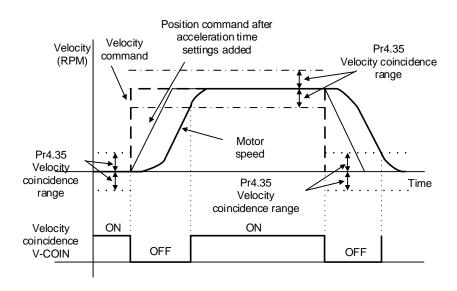


	Label	Zero spe	ed		Mode						F
Pr4.34	Range	1~200 0	Unit	RPM	Default	50	ı	ndex		2434h	ſ
	Activation	Immedia	te								

To set threshold value for zero speed clamp detection.

Zero speed clamp detection (ZSP) output signal valid when motor speed goes under the value set in Pr4.34

- Disregard the direction of rotation, valid for both directions.
- Hysteresis of 10RPM. Please refer to diagram on the right side.

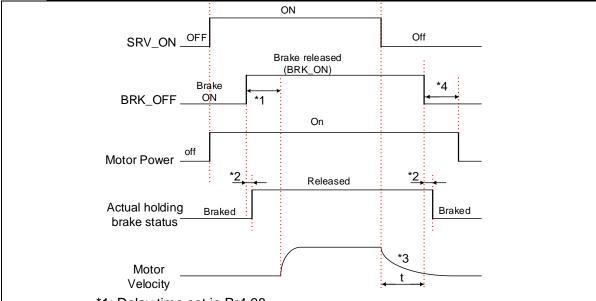


	Label	Velocity coir	ncidence	range	Mode		PV		CSV	
Pr4.35	Range	10~2000	Unit	RPM	Default	50	Index		2435h	
	Activation	Immediate								

If the difference between velocity command and motor actual speed is below Pr4.35, Velocity coincidence (V-COIN) output signal valid.

Due to 10RPM hysteresis:

Velocity coincidence output OFF -> ON timing (Pr4.35 -10) r/min Velocity coincidence output ON -> OFF timing (Pr4.35 +10) r/min



output (AT-SPEED)

	Label	Arrival velo	city (AT-	speed)	Mode	P۱	/	CSV
Pr4.36	Range	10~2000	Unit	RPM	Default	1000	Index	2436h
	Activation	Immediate						
	When motor velocities Detection using Velocities [r/r]	10ŘPM hyst			out signal is val	id.		
	Pr4.36	+					Time	
	-(Pr4.36- -(Pr4.36+	10)			1	/	7.	
	Arrival veloc output	OFF	ON	OF	ON			

	Label	Motor power	-off delay	time	Mode						F		
Pr4.37	Range	0~3000	Unit	1ms	Default	100	Ir	ndex			2437h		
	Activation	Immediate											
	To set delay time for holding brake to be activated after motor power off to prevent axis from sliding.												
	Label Delay time for holding brake release Mode										F		
Pr4.38	Range	0~3000	Unit	1ms	Default	0	Ir	ndex		:	2438h		
	Activation	Immediate					•			•			
	To set delay	time for holdir	ng brake	to be releas	ed after mo	otor po	wer o	n. Mo	otor w	/ill			
	remain at current position and input command is masked to allow holding brake to be												
	fully released before motor is set in motion.												

- *1: Delay time set in Pr4.38
- *2: Delay time from the moment BRK_OFF signal is given until actual holding brake is released or BRK_ON signal is given until actual holding brake is activated. It is dependent on the holding brake of the motor.
- *3: Deceleration time is determined by Pr6.14 or if motor speed goes below Pr4.39, whichever comes first. BRK_OFF given after deceleration time.
- *4: Pr4.37 set time value.

Delay time from the moment SRV_ON is given until BRK_OFF switch to BRK_ON, is less than 500ms.

	Label	Holding brak	e activa	tion speed	Mode			F
Pr4.39	Range	30~3000	Unit	RPM	Default	30	Index	2439h
	Activation	Immediate						

To set the activation speed for which holding brake will be activated.

When SRV-OFF signal is given, motor decelerates, after it reaches below Pr4.39 and Pr6.14 is not yet reached, BRK_OFF is given.

BRK_OFF signal is determined by Pr6.14 or if motor speed goes below Pr4.39, whichever comes first.

Application:

- 1. After disabling axis, Pr6.14 has been reached but motor speed is still above Pr4.39, BRK_OFF signal given.
- 2. After disabling axis, Pr6.14 has not been reached but motor speed is below Pr4.39, BRK_OFF signal given.

	Label	Emergency	stop fund	ction	Mode						F
Pr4.43	Range	0~1	Unit	-	Default	0	Index			2	2443h
	Activation	Immediate									
	0: Emergency stop is valid, servo driver will be forced to STOP and alarm occurs. 1: Emergency stop is invalid, servo driver will not be forced to STOP.										

					not be forced to			
	Label	AO1 outp	ut mode		Mode			F
Pr4.64	Range	0~1	Unit	-	Default	0	Index	2464h
	Activation	Immediate)	1	1	•	.	
	Set value			Desc	ription			
	[0]	Negative/Po	sitive valu	e: -10~1	OV			
	1	Absolute va	lue output:	0~10V				
	Other	Reserved						
	Label	AO1 signa	al		Mode			F
Pr4.65	Range	0x0~0x7F FFFFF	F Unit	-	Default	0	Index	2465h
	Activation	Immediate	9					
	Bit 0 – 15: AO	signal source	e; Bit 16 – 3	1: DO e	xtension channe	el		
	Bit0~E	Bit15			Signal source			
	0>	κ0	-					
	0>	1	Motor rot	ational s				
	0>	(2	Position of	commar				
	0>	(3	Internal p	osition	command veloc	city (V/	krpm)	
	0>	•		(0.03V/0.01)				
	0>				d deviation (m			
	0>				d deviation (m	N/Enco	oder unit)	
	0>		Analog 1					
	0>		Analog 2					
	0>		Analog 3		N (/5\ /)			
	0x		Extension)V/5V)			
	0x Bit 16 – 31: O		As per Pr		rce – 0vA			
	Bit16~		WICH AC 31	griai 300	Channel			
	01	h	Alarm out	put				
	02	2h	Servo rea	dy				
	03	3h	External b	rake rel	eased			
	04	ŀh	Positionin	g compl	eted			
			Please re	fer to Pr	4.12 for other si	gnal cha	annels	
	Label	AO1 amp	ification		Mode			F
Pr4.66	Range	-10000~1 000	Unit	0.01	Default	100	Index	2466h
	Activation	Immediate	9					

<u> </u>					User ma						
		<u> </u>			output = amplif	ication	x the	oretical v	oltage		
	Label		mmunication	setting	Mode					F	
Pr4.67	Range	-10000~ 000	-10 Unit	-	Default	0		Index		2467h	
	Activation	Immedia	ate								
	Available whe	en AO1 = 0x	B, AO1 outpu	t = outpu	ut setting of Pr	4.67					
	Label	AO1 offs	set		Mode					F	
Pr4.68	Range	-10000~ 000	-10 Unit	-	Default	0		Index		2468h	
	Activation	Immedia	ate								
	To set AO1 of	ffset value.									
	Label	AO2 out	tput mode		Mode					F	
Pr4.69	Range	0~10	Unit	-	Default	0		Index		2469h	
	Activation	Immedia	ate		ı		1				
	Set value			Desc	ription						
	[0]	Negative/I	Positive value								
	1	Absolute \	value output:	0~10V							
<u> </u>	Other										
	Label	AO2 sig			Mode					F	
Pr4.70	Range	0x0~0x7 FFFFF	7FF Unit	-	Default	0		Index		2470h	
	Activation	Immedia	ate								
			urce; Bit 16 –	31: DO 6	extension chan	nnel					
	Bit0	~Bit15			Signal source	е					
		0x0	-								
		0x1	-		speed (V/krp						
		0x2			nd velocity (\			`			
1		0x3			command vel		V/krp	om)			
1		0x4 0x5	<u> </u>		d (0.03V/0.0 ^o		mma	and unit			
1		0x6									
	-	570	1 03111011	Position command deviation (mV/Encoder unit)							
		0x7	Analog 1	(V/V)							
		0x7 0x8	Analog 1								
			Analog 1 Analog 2 Analog 3	2 (V/V)							
		0x8	Analog 2	2 (V/V) 3 (V/V)							
		0x8 0x9 0xA 0xB	Analog 3 Analog 3 Extension As per P	2 (V/V) 3 (V/V) on DO (2r4.72	0V/5V)						
	Bit 16 – 31:	0x8 0x9 0xA 0xB Only availab	Analog 2 Analog 3 Extension	2 (V/V) 3 (V/V) on DO (2r4.72	0V/5V) urce = 0xA						
	Bit 16 – 31:	0x8 0x9 0xA 0xB Only availab 5~Bit31	Analog 2 Analog 3 Extension As per Pole when AO s	2 (V/V) 3 (V/V) on DO (Pr4.72 signal so	0V/5V)						
	Bit 16 – 31:	0x8 0x9 0xA 0xB Only availab 6~Bit31	Analog 2 Analog 3 Extension As per Pole when AO s Alarm ou	2 (V/V) 3 (V/V) on DO (2r4.72 signal so	0V/5V) urce = 0xA						
	Bit 16 – 31:	0x8 0x9 0xA 0xB Only availab 5~Bit31	Analog 2 Analog 3 Extension As per Pole when AO s	2 (V/V) 3 (V/V) on DO (Pr4.72 signal so atput ady	0V/5V) urce = 0xA Channel						

			Please re	efer to P	r4.12 for other s	ignal char	nnels		
	Label	AO2 amplific	ation		Mode				F
Pr4.71	Range	-10000~10 000	Unit	-	Default	0	Index		2471h
	Activation	Immediate							
	To set the ampl	ification of AO2	2, actual v	voltage o	output = amplific	ation x the	eoretical v	oltage	
	Label	AO2 commu	nication	setting	Mode				F
Pr4.72	Range	-10000~10 000	Unit	-	Default	0	Index		2472h
	Activation	Immediate							
	Available when	AO1 = 0xB, AO	01 outpu	t = outpu	it setting of Pr4.	72			
	Label	AO2 offset			Mode				F
Pr4.73	Range	-10000~10 000	Unit	-	Default	0	Index		2473h
	Activation	Immediate							
	To set AO2 offs	et value.							_

	Label	Warning inc	licator	light 1	Mode			F
Pr4.74	Range	0~100	Unit	-	Default	1	Index	2474h
	Activation	Immediate						
	To select warni	ng signal for wa	arning in	dicator li	ght 1, as the tab	le in Pr	4.78	
	Label	Warning ind	dicator	light 2	Mode			F
Pr4.75	Range	0~100	Unit	-	Default	2	Index	2475h
	Activation	Immediate						
	To select warni	ng signal for wa	arning in	dicator li	ght 2, as the tab	le in Pr	4.78	
	Label	Warning ind	licator	light 3	Mode			F
Pr4.76	Range	0~100	Unit	-	Default	3	Index	2476h
	Activation	Immediate						
	To select warni	ng signal for wa	arning in	dicator li	ght 3, as the tab	le in Pr	4.78	
	Label	Warning ind	dicator	light 4	Mode			F
Pr4.77	Range	0~100	Unit	-	Default	4	Index	2477h
	Activation	Immediate						
	To select warni	ng signal for wa	arning in	dicator li	ght 4, as the tab	le in Pr	4.78	
Pr4.78	Label	Warning ind	licator	light 5	Mode			F

				O3ei iiid	illuat of LLo	-LC I AC Jei	<u>vo</u>
Range	0~100	Unit	-	Default	5	Index	2478h
Activation	Immediate						
To select wa	rning signal for wa	arning ind	dicator li	ght 1			
Set value	Signal						
[0]	None						
1	Negative lim	it					
2	Battery low volt	age					
3	Overload						
4	Torque limit						
5	Positive limi	t					
other	Reserved						
During norm	al operation, warr	ning indic	ator light	t will be lighted	d in a cycle).	

3.2.6 【Class 5】 Extension settings

	Label	Driver setting:	prohibitions	Mode							F			
Pr5.04	Range	0~2	Unit	_	Defaul t	0	Inc	dex			2504h	2504h		
	Activation	Immed	mmediate											
	To set driver prohibition input (POT/NOT): If set to 1, no effect on homing mode.													
	Set value	Explanation												
	0 I	POT → F	ositive o	direction drive	prohibited	ł								
		VOT → N	legative	direction drive	e prohibite	ed								
	1 POT and NOT invalid													
	2	Any single sided input from POT or NOT might cause Er260												
	In homing mode, POT/NOT invalid, please set object dictionary 5012-04 bit0=1													

	Label	Servo-off m	node		Mode							F
Pr5.06	Range	0~5	Unit		Default	0	I	Index		2	2506h	
	Activation	After restar	After restart									
	To set servo dr	iver disable m	ode and	status.								
	Set value Explai				n							
	Set value	Mode	Mode			Status						
	0	Servo braking	ervo braking Dyr									
	1	Free stopping	l	Dyna	amic braking							
	2	Dynamic brak	ing	Dyna	amic braking							
	3	Servo braking	J	Free	Free-run							
	4	Free stopping			-run							
	5	Dynamic braking Free-run										

	Label	Main power-	off detection	on time	Mode					F
Pr5.09	Range	50~2000	Unit	ms	Default	50	Ir	ndex		2509h
	Activation	Immediate								
	To set duration	time for dete	ction of ma	in power-of	f or low voltage	supply	/.			

	Label	Servo-o	_	to	Mode							F
Pr5.10	Range	0~2 Unit - Default 0 Index								25	10h	
	Activation	After res	After restart									

To set servo driver disable mode and status if alarm is triggered.

Alarm type 2:

Set value	Expla	nation					
Set value	Mode	Status					
0	Servo braking	Dynamic braking					
1	Free stopping	Dynamic braking					
2	Dynamic braking	Dynamic braking					
3	Servo braking	Free-run					
4	Free stopping	Free-run					
5	Dynamic braking	Free-run					

Alarm type 1:

Set value	Explanation							
Set value	Mode	Status						
0								
1	Dynamic braking	Dynamic braking						
2								
3	Servo braking	Free-run						
4	Free stopping	Free-run						
5	Dynamic braking	Free-run						

	Label	Servo b	Servo braking torque setting							F		
Pr5.11	Range	0~500	0~500 Unit % I		Default	0	Index		25	11h		
	Activation	Immedia	Immediate									

To set torque limit for servo braking mode.

If Pr5.11 = 0, use torque limit as under normal situation.

Between max. torque 6072 and Pr5.11, actual torque limit will take smaller value.

	Label	Overloa setting	Overload level setting		Mode						F
Pr5.12	Range	0~11 5	Unit	%	Default	0	Index	ndex		2512h	
	Activation	Immed	iate								

If Pr5.12 = 0, overload level = 115%Use only when overload level degradation is needed.

	Label	Overspeed	d level se	Mode						F	
Pr5.13	Range	0~10000 Unit RPM			Defaul t	0	Inde	<		2513h	
	Activation	Immediate)								
If motor speed exceeds Pr5.13, Er1A0 might occur.											

When Pr5.13 = 0, overspeed level = max. motor speed x 1.2

	Label	I/O digital f	ilter	Mode							F
Pr5.15	Range	0~255 Unit 0.1ms			Defaul t	10	Index	<	2515h	l	
	Activation	Immediate									
Digital filtering of I/O input. Overly large value set will cause control delay.											

	Label	Counter mode	clearing	input	Mode						F
Pr5.17	Range	0~4	Unit	-	Defaul t	3	Index		2515h	I	
	Activation	Immediate	ı								

To set the clearing conditions for deviation counter clearing input signal.

Set value	Condition
0/2/4	Invalid
1	Always clear
3	Clear only once

	Label	Mode	PP			НМ	CS P	5				
Pr5.20	Range	0~2	Unit	_	Default	2		Inde	Х		25	20h
	Activation	Disable										

Set value	Unit
0	Encoder unit
1	Command unit
2	0.0001rev

Command unit: Pulse from host Encoder unit: Pulse from encoder

Pr5.20 only changes the unit use on host tracing function, has no relation with any position related

parameters.

	Label	Torque limit	selectior	า	Mode	PP		НМ	CS P	5		
Pr5.21	Range	0~2	Unit	_	Default	2	Index	Index		25	21h	
	Activation	Immediate										

Set value	Positive limit value	Negative limit value
0	Pr0.13	Pr0.13
1	Pr0.13	Pr5.22
2	60E0	60E1

Between max. torque 6072 and Pr5.21, actual torque limit will take smaller value.

	Label	2 nd torque lim	it	Mode					F			
Pr5.22	Range	0~500	Unit	%	Default	300	Ind	lex		2522h		
	Activation	Immediate										
	Limited by moto	or max. torque.	nax. torque.									
	Retween max, torque 6072 and Pr5 22, actual torque limit will take smaller value											

	Label	LED initial status			Mode						F
Pr5.28	Range	0~42	Unit		Default	34		ndex		2528h	
	Activation	After restart									

To set content display on front panel of the servo driver at servo driver power on.

Set value	Content	Set value	Content	Set value	Content
0	Position command deviation	15	Overload rate	30	No. of encoder communication error
1	Motor speed	16	Inertia ratio	31	Accumulated operation time
2	Position command velocity	17	No rotation cause	32	Automatic motor identification
3	Velocity control command	18	No. of changes in I/O signals	33	Driver temperature
4	Actual feedback torque	19	Number of over current signals	34	Servo status
5	Sum of feedback pulse	20	Absolute encoder data	35	/

6	Sum of command pulse	21	Single turn position	36	Synchronous period
7	Maximum torque during motion	22	Multiturn position	37	No. of synchronous loss
8	/	23	Communication axis address	38	Synchronous type
9	Control mode	24	Encoder position deviation	39	Whether DC is running or not
10	I/O signal status	25	Motor electrical angle	40	Acceleration/Deceler ation status
11	/	26	Motor mechanical Angle	41	Sub-index of OD index
12	Error cause and history record	27	Voltage across PN	42	Value of sub-index of OD index
13	Alarm code	28	Software version		
14	Regenerative load rate	29	/		

	Label	Torque limit of initialization	duration	during	Mode						F
Pr5.37	Range	0~5000	0~5000 Unit ms			500	ı	ndex		2537h	1
	Activation	Immediate	nmediate								

To set time threshold for output torque to reach limit under torque initialization mode.

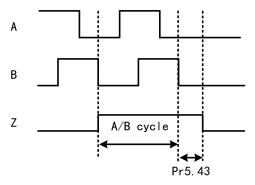
Only applicable for torque initialization method -6 to -1

Under torque initialization mode, motor torque reached Pr5.39 and the duration reaches Pr5.37 before moving into next step.

	Label	3 rd torque lim	nit		Mode						F
Pr5.39	Range	0~500	Unit	%	Default	80		Index		2539h	
	Activation	Immediate									
	To set torque li	mit during tord	que initia	lization							
	Between max.	torque 6072 a	nd Pr5.2	22, actua	al torque limit w	ill take	sma	aller va	alue.		

Pr5.40 R	Label	D41 set value	D41 set value								F
Pr5.40	Range	0x0~0xFFFFF	Unit	%	Default	0X3	OC	Inc	lex	:	2540h
	Activation	Immediate									
	Set object wor	d monitored by D4	1, index	(left 4 b	its) + sub-ir	ndex (right 1	bit),	if mor	nitorii	ng
	0x6092-01, se	t Pr5.40 to 0x6092	1.								

Pr5.42	Label	Frequency divider signal polarity	output	- ABZ	Mode					F
	Range	0~7	Unit	-	Default	0	Inc	dex	2542h	1



		OSEI IIIdildat OI EEO-EC T AC
Activation	After restart	
Bit	Polarity	Description
Bit0	0 = Positive	Z polarity setting of frequency divider output
Бію	1 = Negative	and position comparison
	0 = Positive	Only valid in position comparison.
Bit1	1 = Negative	Polarity setting when phase A frequency
		divider as position comparison output
	0 = Positive	Only valid in position comparison.
Bit2		Polarity setting when phase B frequency
		divider as position comparison output

Pr5.43	Label	Frequency divid Z-signal width	' ' '									F
Pr5.43	Range	0~500	Unit	μs	Default	0		Ind	dex		2543h	
	Activation	After restart	After restart									
	Set value		Description									

Set value	Description
[0]	Z bandwidth equivalent to 1 cycle of A/B
1~500	Delay setting on top of A/B cycle width

When Pr5.43 = 0, width of frequency divider output Z-signal is equivalent to width of 1 cycle of A/B, value set in Pr5.43 + A/B cycle width = delay setting.

	Label	Frequency divider	output s	ource	Mode						F
Pr5.44	Range	0~4	Unit	-	Default	0	Ind	lex		2544h	1
	Activation	After restart							•		
	Set Value		Desc	ription							
	[0]	Position feedback of	of encode	er #1(m	otor encod	er)					
	1	Position feedback of	of encode	er #2(e:	kternal enc	oder)					
	2	Reserved									
	3	Pulse input comma	nd positi	on syn	chronous o	utput;					
		position comparison	n not ava	ailable i	n this mode	Э					
	4	Frequency divider of	output pr	ohibited	d						

	Label	External encode feedback threshold	Mode							F		
Pr5.45	Range	0~10000	Unit	rpm	Default	0		Ind	dex		2545h	l
	Activation	Immediate										
	To set external	encoder overspee	d feedb	shold								
			der overspeed reedback times									

	Label	Vent overload leve	el		Mode						F
Pr5.46	Range	0~115	Unit	%	Default	0	Inc	dex	2	2546h	I
	Activation	Immediate									
	Set value		Desc	ription							
	[0]	Default level: 80%									
	1~115	Set vent overload le	evel acco	ordingly							

	Label	Enable position co	mpariso	n	Mode			F
Pr5.70	Range	0~1	Unit	%	Default	0	Index	2570h
	Activation	Immediate				•	•	
	Set Value	Description						
	[0]	Disable						
	1	Enable (Rising ed	ge)					

	Label	Position comparis	on mode)	Mode			F
Pr5.71	Range	0~2	Unit	-	Default	0	Index	2571h
	Activation	Immediate						
	Set value	Description	n					
	[0]	Single comparison						
	1	N cycles compariso	n					
	2	Cycle comparison						
	Detailed exp	lanations is available	in Char	oter 6	Application u	under Posi	tion Comparis	on section

	Label	Position compariso	on pulse	output	Mode				F
Pr5.72	Range	0~4095	Unit	ms	Default	0.1m	าร	Index	2572h
	Activation	Immediate						•	
	To set output s	ignal pulse width o	f positio	n compa	arison				

	Label	Position comparison time compensation	•	ıt delay	Mode							F
Pr5.73	Range	-10000~10000	Unit	0.1µs	Default	0		Ind	lex	2	2573h	ı
	Activation	After restart										
	To set delay tir	me compensation for	or delay	due to I	DO/ freque	ncy di	vider					

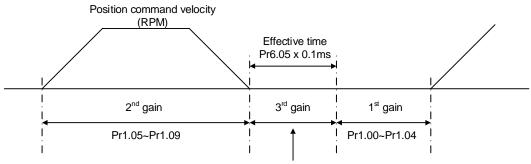
	Label	Position compa point	rison :	starting	Mode					F
Pr5.74	Range	1~42	Unit	-	Default	1	Ind	dex	2574h	
	Activation	Immediate								
	To set the start	ting point of positio	n compa	arison.						

	Label	Position comparison	on end p	oint	Mode				F
Pr5.75	Range	1~42	Unit	-	Default	1	Inc	dex	2575h
	Activation	Immediate							
	To set the end	point of position co	mpariso	on.					

	Label	No. of cycle of comparison	for N	cycles	Mode							F
Pr5.76	Range	1~50000	Unit	-	Default	1		Inc	dex	:	2576h	
_	Activation	Immediate										
	To set the num	ber of cycles for N	cycles o	compari	son in posit	ion co	mpari	son.				

	Label	Position comparison position as origin	on – set	current	Mode						F
Pr5.77	Range	0~1	Unit	-	Default	0		Inc	dex	2577h	
	Activation	Immediate									
	Set Value	Description									
	[0]	Disable									
	1	Enable (Rising edg	ge)								
	Set origin for	position comparisor	n. set cu	rrent po	sition as or	iain at	risina	edae	€.		

	Label	Position comparis origin	on – Of	fset to	Mode							F
Pr5.78	Range	-2 ³¹ ~2 ³¹ -1	Unit		Default	0		Inde	ex	2	2578h	
	Activation	Immediate										
	To set offset va	alue of position in c	omparis	on to or	igin set in F	Pr5.77						


3.2.7 【Class 6】 Other settings

	Label	Encoder zero compensatio	•	า	Mode					F
Pr6.01	Range	0~360	Unit	0	Default	0	Index	2	2601h	
	Activation	After restart								
	Angle of the er	ncoder after ze	ro positi	on calibration						

	Label	JOG trial command	run	torque	Mode			F		
Pr6.03	Range	0~350	Unit	%	Default	350	Index	2603h		
	Activation	Immediate								
To set torque for JOG trial run command.										
	Label	JOG trial command	run v	elocity	Mode			F		
Pr6.04	Range	0~10000	Unit	r/min	Default	30	Index	2604h		
	Activation	Immediate								
	To set velocity	for IOC trial r	ın oomn	aand						

	Label	Position 3 rd g	ain valid	d time	Mode	PP		НМ	CS P			
Pr6.05	Range	0~10000	Unit	0.1ms	Default	0	Index	<		2605h		
	Activation	Immediate										
	To set time for 3 rd gain to be valid When not in use, set Pr6.05=0, Pr6.06=100											
	Label Position 3 rd gain scale factor Mode PP HM CS P											
Pr6.06	Range	0~1000	Unit	100%	Default	100	Index	<		2606h		
	Activation	Immediate										
	Set up the 3 rd gain by multiplying factor of the 1 st gain											

Position loop gain = Pr1.00 x Pr6.06/100
Velocity loop gain = Pr1.01 x Pr6.06/100
Velocity loop integral time constant, Velocity detection filter, Torque filter time constant still uses 1st gain

3rd gain= 1st gain * Pr6.06/100

Only effective under position control mode, set Pr6.05≠0, 3rd gain function activated, set 3rd gain value in Pr6.06. When 2nd gain switches to 1st gain, will go through 3rd, switching time value set in Pr1.19.

Above diagram is illustrated using Pr1.15 = 7.

	Label	Torque comn	nand add	ditional	Mode				F				
Pr6.07	Range	-100~100	Unit	%	Default	0	Index	•	2607h				
	Activation	Immediate					-1						
	To set torque f	orward feed a	dditional	value of	f vertical axis.								
	Applicable for	loaded vertical	vertical axis, compensate constant torque.										
	Application: W	hen load move	pad move along vertical axis, pick any point from the whole motion and stop										
	the load at tha	t particular poi	nt with m	notor en	abled but not ro	tating. I	Record outp	put torq	ue value				
	from d04, use	that value as t	orque co	mmand	additional valu	e (comp	ensation v	alue)					
	Label	Positive direc	ction tord	que	Mode				F				
		compensatio	n value										
Pr6.08	Range	-100~100	Unit	%	Default	0	Index		2608h				
	Activation	Immediate				•	•						

								 _			
		Label	Negative dire	ection tor	que	Mode					F
			compensatio	n value							
	_	Range	-100~100	Unit	%	Default	0	Index	2	2609h	
		Activation	Immediate				ı	1			

To reduce the effect of mechanical friction in the movement(s) of the axis. Compensation values can be set according to needs for both rotational directions.

Applications:

1. When motor is at constant speed, d04 will deliver torque values.

Torque value in positive direction = T1;

Torque value in negative direction = T2

$$Pr6.08/Pr6.09 = T_f = \frac{|T1 - T2|}{2}$$

	Label	Current resp	onse set	tings	Mode							F
Pr6.11	Range	50~100	Unit	%	Default	100		Index		2	2611h	
	Activation	Immediate										
To set driver current loop related effective value ratio												

Pr6.14	Label	Max. time disabling	to stop	after	Mode				F
	Range	0~3000	Unit	ms	Default	500	Index	2614h	
	Activation	Immediate							

To set the max. time allowed for the axis to stop on emergency stop or normal axis disabling. After disabling axis, if motor speed is still higher than Pr4.39 but the time set in Pr6.14 is reached, BRK_ON given and holding brake activated.

BRK_ON given time is determined by Pr6.14 or when motor speed goes below Pr4.39, whichever comes first.

Applications:

- 1. After disabling axis, if motor speed is still higher than Pr4.39 but the time set in Pr6.14 is reached, BRK_ON given and holding brake activated.
- 2. After disabling axis, if motor speed is already lower than Pr4.39 but the time set in Pr6.14 is not yet reached, BRK_ON given and holding brake activated.

	Label	Trial run di	stance		Mode							F	
Pr6.20	Range	0~1200	Unit	0.1rev	Default	10	Index			2	2620h		
	Activation Immediate												
	JOG (Position of	control) : Dis	tance tr	avel of ea	ch motion								

	Label	Trial run wai	iting time	Э	Mode			F			
Pr6.21	Range	0~30000	Unit	ms	Default	300	Index	2621h			
	Activation	Immediate									
JOG (Position control) : Waiting time after each motion											

	Label	No. of trial re	un cycle	Mode						F			
Pr6.22	Range	0~32767	Unit	PCS	Default	5 Index				2622h			
	Activation	Immediate											
	JOG (Position of	control) : No. o	of cycles	;									

		Label	Trial run a	acceler	ation	Mode						F		
	Pr6.25	Range	0~1000 0	Unit	ms/(1000rpm)	Default	200		Index			2625h		
		Activation	Immediate											
To set the acceleration/deceleration time for JOG command between 0 rpm to 1000 rp										0 rpr	n			

	Label	Velocity obse	erver gai	n	Mode					F
Pr6.28	Range	0~32767	Unit	_	Default	0		Index		2628h
	Activation	Immediate							_	
	0: Default stable	e gain; Modifi	cations a	are not r	ecommended.					

	Label	Velocity obse	erver bar	ndwidth	Mode							F
Pr6.29	Range	0~32767	Unit	ms	Default	0		Index			2629h	
	Activation	Immediate										
	0: Default stable	e bandwidth; Modifications are recommended.										

	Label	Frame error	window	time	Mode							F	
Pr6.34	Range	0~32767	Unit	ms	Default	100	Inc	dex		2	2634h		
	Activation	Immediate											
To set EtherCAT data frame error detection window time													

	Label	Frame error	window	1	Mode						F
Pr6.35	Range	0~32767	Unit	-	Default	50 Ind			2	2635h	
	Activation	Immediate									
	To set EtherCAT	To set EtherCAT data frame error detection window									

	Label	Absolute mode denon		rotation etting	Mode	PP	НМ	CS P		
Pr6.54	Range	0~32766	Unit	-	Default	0	Index		2654h	
	Activation	After restart	t							

To set denominator of absolute encoder in rotational mode.

When Pr0.15 = 2 and use in combination with Pr6.54:

Feedback load position $6064 = \frac{PA6.63}{PA6.54}x$ Electronic gear ratio

	Label	Blocked roto threshold	r alarm t	Mode						
Pr6.56	Range	0~300	Unit	%	Default	300	Inde	ex	2656h	
	Activation	Immediate								

To set the torque threshold of blocked rotor to trigger alarm. (Alarm triggered if torque output% larger than threshold value & under 10rpm)

If Pr6.56 = 0, blocked rotor alarm deactivated. (This applicable only to 220VAC drivers)

If motor speed is 10rpm or above, Er102 won't be triggered.

	Label	Blocked roto time	r alarm o	lelay	Mode						
Pr6.57	Range	0~1000	0~1000 Unit ms			400	400 Index			2657h	
	Activation	Immediate									
To set delay time for blocked rotor alarm to trigger											

	Label	Homing thresho		position	Mode						
Pr6.59	Range	0~100	Unit	0.00001rev	Default	5 Index		×	2659h		
	Activation	Immedia	ate								
	To set position t	ning mode.									

	Label	Z signal hol	ding tim	е	Mode			F	
Pr6.61	Range	0~100	Unit	ms	Default	10	Index	2661h	
	Activation	Immediate							

To set the holding time for Z signal to maintain active high

Application:

- 1. Z signal for 60FDH;
- 2. Z signal for homing process
- 3. Z-phase frequency output pulse width. Unit = 0.1ms;

Please set Pr6.61≥0.2ms if used for 3 applications as above

	Label	Absolute muupper limit	ultiturn d	lata	Mode					F
Pr6.63	Range	0~32766	Unit	rev	Default	0	Index	2	2663h	l
	Activation	After restart	t							

To set upper limit of multiturn data with absolute encoder set as rotational mode.

When Pr0.15 = 2 and use in combination with Pr6.54:

Feedback load position $6064 = \frac{PA6.63}{PA6.54}x$ Electronic gear ratio

3.2.8 【Class 7】 Factory settings

Please take precaution when modifying Class 7 parameters. Might cause driver errors

7 10	Label	Motor model		dee i parai	Mode		111101 01	10/0	F
Pr7.15	Range	0x0~0x7FF F	Unit	-	Default	0x200	Prope	rty	R/W
	Activation	After restart			Data leng	gth	16 bit		
	Set value			Descrip	otion				
	0x100	Read from El							
	[0x200]	Read from E	ncoder						
	When Pr7.15								
	Parameter	Label							
	Pr7.00	Current loop	<u> </u>						
	Pr7.01	Current loop							
	Pr7.05	No. of motor							
	Pr7.06	Motor phase		ce					
	Pr7.07	Motor D/Q in							
	Pr7.08	Motor back E							
	Pr7.09	Motor torque							
	Pr7.10	Motor rated r							
	Pr7.11	Motor max. re	otational	speed					
	Pr7.12	Motor rated of	urrent						
	Pr7.13	Motor rotor in	ertia						
	Pr7.14	Driver power	rating						
	Pr7.16	Encoder							
	Pr7.17	Motor max. c	urrent						
	Pr7.18	Encoder inde	x angle	compensat	ion				
	Label	Encoder			Mode				F
Pr7.16	Range	0x0~0x200	Unit	-	Default As per encoder			rty	R/W
	Activation	After restart			Data leng	jth	16 bit		
		Set value			Description				
					17-bit encoder				
		0x7		23-bit e	23-bit encoder				

	Label	External grat	ing ruler	Mode							F	
Pr7.54	Range	1-1000000	Unit	Default	100	Р	Property			R/W		
	Activation	After restart			Data leng	jth	16	6 bit				
	To select exter	nal grating rule	er precis	ion								

3.3 402 Parameters Function

Panel Display as follows:

Parameter Valid mode Description

CSP: Valid in cyclic synchronous position mode CSV: Valid in cyclic synchronous velocity mode CST: Valid in cyclic synchronous torque mode

HM: Valid in homing mode

PP: Valid in profile position mode PV: Valid in profile velocity mode PT: Valid in profile torque mode

F: Valid in all modes

Index	Label	Error o	code		Unit	-	Structur e	VAR	Туре	Uint 16
603Fh	Access	RO	Mapping	TPDO	Mode	F	Range	0x0~0 xFFFF	Default	0X0
	Please refer	oter 9 for mo	re detai	ls on error c	odes.					

Index	Label	Contro	ol word		Unit	-	Structur e	VAR	Туре	Uint 16
6040h	Access	RW	Mapping	RPDO	Mode	F	Range	0x0-0x FFFF	Default	0X0

Bit	Label	Description
0	Start	1 - valid, 0 - invalid
1	Main circuit power on	1 - valid, 0 - invalid
2	Quick stop	0 - valid,1 - invalid
3	Servo running	1 - valid, 0 - invalid
4-6	Running mode related	Related to each servo running mode
7	Fault reset	Reset resettable fault alarm. Rising edge of Bit7 is valid, bit7 remains at 1, and all other instructions are invalid
8	Pause	For more information on how to pause in each mode, refer to Object Dictionary 605Dh
9	No definition	Undefined
10	Reserved	Undefined
11-15	Reserved	Undefined

	Label	Status	word		Unit	-	Structure	VAR	Туре	Uint 16
Index 6041h	Access	RO	Mapping	TPDO	Mode	ALL	Range	0x0~ 0xFF	Default	0x0
							_	FF		

Bit	Label	Description
0	Servo ready	1 - valid, 0 - invalid
1	Start	1 - valid, 0 - invalid
2	Servo running	1 - valid, 0 - invalid
3	Fault	1 - valid, 0 - invalid
4	Main circuit power on	1 - valid, 0 - invalid
5	Quick stop	0- valid, 1 - invalid
6	Servo cannot run	1 - valid, 0 - invalid
7	Warning	1 - valid, 0 - invalid
8	Reserved	Reserved
9	Remote control	1 - valid, 0 - invalid
10	Arrived at position	1 - valid, 0 - invalid
11	Internal limit valid	1 - valid, 0 - invalid
12-13	Mode related	Related to each servo operation mode
14	Reserved	Reserved
15	Origin found	1 - valid, 0 - invalid

Index	Label	Quick	stop option (code	Unit	-	Structure VAR	Туре	INT 16	
605Ah	Access	RW	Mapping	-	Mode	ALL	Range	0~7	Default	2

Motor stops when quick stop command is given.

PP, CSP, CSV, PV

- 0 : To stop motor through Pr5.06. Status: Switch on disable, axis disabled.
- 1 : Motor decelerates and stops through 6084h. Status: Switch on disable, axis disabled.

- 2 : Motor decelerates and stops through 6085h. Status: Switch on disable, axis disabled.
- 3 : Motor decelerates and stops through 60C6h. Status: Switch on disable, axis disabled.
- 5 : Motor decelerates and stops through 6084h. Status: Quick stop
- 6 : Motor decelerates and stops through 6085h. Status: Quick stop
- 7 : Motor decelerates and stops through 60C6h. Status: Quick stop

НМ

- 0 : To stop motor through Pr5.06. Status: Switch on disable, axis disabled.
- 1 : Motor decelerates and stops through 609Ah. Status: Switch on disable, axis disabled.
- 2 : Motor decelerates and stops through 6085h. Status: Switch on disable, axis disabled.
- 3 : Motor decelerates and stops through 60C6h. Status: Switch on disable, axis disabled.
- 5 : Motor decelerates and stops through 609Ah. Status: Quick stop
- 6 : Motor decelerates and stops through 6085h. Status: Quick stop
- 7 : Motor decelerates and stops through 60C6h. Status: Quick stop

CST

- 0 : To stop motor through Pr5.06. Status: Switch on disable, axis disabled.
- 1, 2: Motor decelerates and stops through 6087h. Status: Switch on disable, axis disabled.
- 3 : Motor decelerates and stops through torque = 0. Status: Switch on disable, axis disabled.
- 5, 6: Motor decelerates and stops through 6087h. Status: Quick stop
- 7 : Motor decelerates and stops through torque = 0. Status: Quick stop

605Bh	Label	Motor decele mode selection	ration-st	Mode						F
	Range	RW	Unit	-	Range	0~1	I	Defau	lt	0

PP, CSP, CSV, PV

- 0 : To stop motor through Pr5.06, Pr5.06 = 0(Emergency stop), Pr5.06=1(Free stop)
- 1 : Motor decelerates and stops through 6084h

НМ

- 0 : To stop motor through Pr5.06, Pr5.06 = 0(Emergency stop), Pr5.06=1(Free stop)
- 1 : Motor decelerates and stops through 609Ah

CST

- 0 : To stop motor through Pr5.06, Pr5.06 = 0(Emergency stop), Pr5.06=1(Free stop)
- 1 : Motor decelerates and stops through 6087h

Index	Label	Axis disabled-s selection	stopping	mode	Mode					F
605Ch	Range	RW	Unit	-	Range	0~1	Defau	lt	0	

PP, CSP, CSV, PV

- 0 : To stop motor through Pr5.06, Pr5.06 = 0(Emergency stop), Pr5.06=1(Free stop)
- 1 : Motor decelerates and stops through 6084h

HM

0 : To stop motor through Pr5.06, Pr5.06 = 0(Emergency stop), Pr5.06=1(Free stop)

1 : Motor decelerates and stops through 609Ah

CST

- 0 : To stop motor through Pr5.06, Pr5.06 = 0(Emergency stop), Pr5.06=1(Free stop)
- 1 : Motor decelerates and stops through 6087h

Index 605Dh	Label	Pause-stopping mode selection			Unit	ı	Structure	VAR	Туре	INT 16
	Access	RW	Mapping	-	Mode	F	Range	1~3	Default	1

When control word – pause sets decelerating, stopping mode. Also suitable for deceleration mode settings during mode switching

PP, CSP, CSV, PV

- 1 : Motor decelerates and stops through 6084h. Status: Operation enabled, axis enabled.
- 2 : Motor decelerates and stops through 6085h. Status: Operation enabled, axis enabled.
- 3 : Motor decelerates and stops through 60C6h. Status: Operation enabled, axis enabled.

НМ

- 1 : Motor decelerates and stops through 609Ah. Status: Operation enabled, axis enabled.
- 2 : Motor decelerates and stops through 6085h. Status: Operation enabled, axis enabled.
- 3 : Motor decelerates and stops through 60C6h. Status: Operation enabled, axis enabled.

CST

- 1, 2: Motor decelerates and stops through 6087h. Status: Operation enabled, axis enabled.
- 3 : Motor decelerates and stops through torque = 0. Status: Operation enabled, axis enabled.

	Index 605Eh	Label	Alarm - stopping mode selection			Unit	1	Structure	VAR	Туре	INT 16
		Access	RW	Mapping	-	Mode	F	Range	0~2	Default	0

Select stopping mode when servo alarm (Err 8xx) occurs.

PP, CSP, CSV, PV

- 0 : Select motor stopping mode according to alarm properties. Status: Fault, axis disabled.
- 1 : Motor decelerates and stops through 6084h. Status: Fault, axis disabled.
- 2 : Motor decelerates and stops through 6085h. Status: Fault, axis disabled.

НМ

- 0 : Select motor stop by the alarm attribute for emergency stop, the fault state and disable
- 1 : After the 609Ah motor is decelerated and stopped,, the fault state and disable
- 2 : After the 6085h motor is decelerated and stopped, the fault state and disable

CST

- 0, 1 : Select motor stop by the alarm attribute for emergency stop, the fault state and disable
- 2 : After the 6087 motor is decelerated and stopped, the fault state and disable

When other alarms, i.e. drive-side alarms:

Select motor stop by the alarm attribute for emergency stop, the fault state and disable

Index 6060h	Label	Opera selecti		Unit	-	Structure	VAR	Туре	Int 8
	Access	RW	Mapping	RPDO	Mode	F	Range	1~11	Default

No.	Mode	Abbr.
1	Profile position mode	PP
3	Profile velocity mode	PV
4	profile Torque mode	PT
6	Homing mode	НМ
8	Cyclic synchronous position mode	CSP
9	Cyclic synchronous velocity mode	CSV
10	Cyclic synchronous torque mode	CST

Index	Label	Opera	tion mode di	splay	Unit	-	Structure	VAR	Туре	Int 8
6061h	Access	RW	Mapping	RPDO	Mode	F	Range	1~11	Default	8

No.	Mode	Abbr.
1	Profile position mode	PP
3	Profile velocity mode	PV
4	profile Torque mode	PT
6	Homing mode	НМ
8	Cyclic synchronous position mode	CSP
9	Cyclic synchronous velocity mode	CSV
10	Cyclic synchronous torque mode	CST

Indov	Label	Pos	Position command			Comman d unit	Structure	VAR	Туре	Int 32
Index 6062h	Access	R 0	Mapping	TPDO	Mode	PP/CSP/ HM	Range	-21474836 48~214748 3647	Default	0

Reflects position command when servo driver is enabled.

Indov	Label	Actu	ual i ition	nternal	Unit	Encoder unit	Structure	VAR	Туре	Int 32
Index 6063h	Access	R 0	Mapping	TPDO	Mode	F	Range	-21474836 48~214748 3647	Default	0

Reflects motor absolute position (Encoder unit)

							i illaliaat ol EEt	1 7 1 7 10 001	<u>· · · </u>	
Indov	Label	Acti	ual po dback	sition	Unit	Comman d unit	Structure	VAR	Туре	Int 32
Index 6064h	Access	R 0	Mappin g	TPD O	Mod e	F	Range	-21474836 48~214748 3647	Default	0
	Doflooto uo	or'o r	oal time ab	ooluto	nacition					

Reflects user's real time absolute position 6064h*Gear ratio = 6063h

Index	Label	Pos		/iation	Unit	Comman d unit	Structure	VAR	Туре	Ulnt 32
6065h	Access	R 0	Mappin g	TPD O	Mod e	PP/CSP/ HM	Range	0~2147483 647	Default	0

To set an acceptable deviation for requested position.

When actual position exceed position deviation window, error might occur.

Index	Label		ition dev ection time	/iation	Unit	ms	Structure	VAR	Туре	Ulnt 16
6066h	Access	R 0	Mappin g	TPD O	Mod e	PP/CSP/ HM	Range	0~65535	Default	0

To set position deviation detection time

Index	_abel	Posi	ition windo	W	Unit	Comman d unit/s	Structure	VAR	Type	UInt 32
6067h	Access	R 0	Mappin g	TPD O	Mod e	PP/CSP/ HM	Range	0~2147483 647	Default	0

To set an acceptable extent of arrival position

Index	Label	Pos time		indow	Unit	Comman d unit/s	Structure	VAR	Туре	Ulnt 16
6068h	Access	R 0	Mappin g	TPD O	Mod e	PP/CSP/ HM	Range	0~65535	Default	0

To set the time between arrival to the output of INP (In position) signal.

Index	Label	Inte velo		mand	Unit	Comman d unit/s	Structure	VAR	Туре	Int 32
606Bh		R	Mappin	TPD	Mod			-21474836		
OOOBII	Access	^		0		ALL	Range	48~214748	Default	0
		U	g	0	е			3647		

To set the time between arrival to the output of INP (In position) signal.

Index	Label	Velo	ocity feedba	ack	Unit	Comman d unit/s	Structure	VAR	Туре	Int 32
606Ch	Access	R 0	Mappin g	TPD O	Mod e	CSV/PP	Range	-21474836 48~214748 3647	Default	0

Reflects user's internal command velocity feedback value

Index	Label	Velocit	y window		Unit	Comma nd unit/s	Structure	VAR	Туре	UInt 16
606Dh	Access	R0	Mapping	RPDO	Mode	PV/CSV	Range	0~6553 5	Default	10
	Set the ran	ge of ve	locity							

Index	Label	Velocit	y window tir	ne	Unit	ms	Structure	VAR	Туре	Ulnt 16
606Eh	Access	R0	Mapping	RPDO	Mode	PV/CS V	Range	0~6553 5	Default	0

To set the time between velocity reached and status word set to TargetReached.

Index	Label	Zero-s	peed thresh	old	Unit	Comm and unit/s	Structure	VAR	Туре	Ulnt 16
606Fh	Access	R0	Mapping	RPDO	Mode	PV/CS V	Range	0~6553 5	Default	10

To set to zero-speed threshold.

Index	Label	Zero-s time	peed thr	eshold	Unit	ms	Structure	VAR	Туре	Ulnt 16
6070h	Access	R0	Mapping	RPDO	Mode	PV/CS V	Range	0~6553 5	Default	100
	To set the ti	ime unti	l status word	d – zero	speed d	etection is	canceled.			

Index	Label					0.1%	Structure	VAR	Туре	Ulnt 16
6071h	Access	RW	Mapping	RPDO	Mode	PT/CS T	Range	-32768~ 32767	Default	0
	To set targe	et torque	for protocol	l and cv	clic tora	ie mode				

Index	Label	Maxim	um torque		Unit	0.1%	Structure	VAR	Туре	UInt 16
6072h	Access	RW	Mapping	RPDO	Mode	F	Range	0~6553 5	Default	3000
	To set max.	torque	for servo dri	ver. Lim	ited by r	notor max.	torque.			

Index	Label	Maxim	um current		Unit	0.1%	Structure	VAR	Туре	Ulnt 16
6073h	Access	R0	Mapping	TPDO	Mode	F	Range	0~6553 5	Default	3000
	To set max. current for servo driver.									

Index	Label	Interna	al command	torque	Unit	0.1%	Structure	VAR	Туре	Int 16
6074h	Access	R0 Mapping TPD		TPDO	Mode	F	Range	-32768~ 32767	Default	0
	Internal cor	nmand	torque							

Index	Label	Motor	current ratin	g	Unit	mA	Structure	VAR	Туре	Int 32
6075h	Access	R0	R0 Mapping TPDO			F	Range	0~2147 483647	Default	3000
	Shows mot	or rated	current.							

Index	Label	Actual	torque		Unit	0.1%	Structure	VAR	Туре	Int 16
6077h	Access	R0	R0 Mapping TPDO			F	Range	-32768~ 32767	Default	0
	Shows serv	o driver	actual torqu	ue feedb	ack					

Index	Label	DC bu	s voltage		Unit	mV	Structure	VAR	Туре	Ulnt 32
6079h	Access	R0	Mapping	TPDO	Mode	F	Range	0~2147 483647	Default	0
	Shows DC	bus volt	age across I	P, N terr	ninals					

Indov	Label	Tar	get positio	n	Unit	Command unit	Structure	VAR	Туре	Int 32	
Index 607Ah	Access	R W	Mappin g	TPD O	Mod e	PP/CSP	Range	-21474836 47~214748 3647	Default	0	
To set the target position under protocol and cyclic position mode.											

Index 607Ch	Label	Hor offs	•	position Unit		Command unit	Structure	VAR Type		Int 32
	Access	R		in TPD	Mod			-21474836		
607 CII		W	Mappin	0		НМ	Range	47~214748	Default	0
		۷V	g		е			3647		

To set position offset to compensate for the deviation of mechanical origin from motor origin under homing

Index	Label	Min. software limit			Unit	Command unit	Structur e	VAR	Туре	Int 32
607Dh-0 1	Access	RW	Mappin g	TPD O	Mode	НМ	Range	-214748364 7~2147483 647	Defaul t	0

To set lower limit with calculated position and actual position using absolute position after homing.

Index	Label	Max. software limit			Unit	Comman d unit	Structure	VAR	Туре	Int 32
607Dh-0 2	Access	RW	Mappin g	TPD O	Mode	НМ	Range	-214748364 7~2147483 647	Defaul t	0

To set upper limit with calculated position and actual position using absolute position after homing.

Index	Label	Motor rotational direction			Unit	-	Structure	VAR	Туре	UInt 8
607Eh	Access	RW	Mappin g	RPDO	Mode	НМ	Range	0x0 – 0xFF	Default	0x0

Mode	9	Value
	PP	
Position	НМ	0: Rotate in the same direction as the position command
mode	CS	128: Rotate in the opposite direction to the position command
	Р	
Velocity	PV	0: Rotate in the same direction as the position command
mode	CS	64: Rotate in the opposite direction to the position command
	V	
Torque	PT	0: Rotate in the same direction as the position command
mode	CST	32: Rotate in the opposite direction to the position command
ALL		0: Rotate in the same direction as the position command
mode		224: Rotate in the opposite direction to the position command

Sets the input polarity of the command.

						0301 11	idilidat of EEO	LO 1 70	301 10		
lu des	Label		ximum prot ocity	ocol	Unit	Comman d unit/s	Structure	VAR	Туре	UInt 32	
Index 607Fh	Access	R W	Mappin g	RPDO	Mode	PP/HM/P V/CST	Range	0~214 74836 47	Default	21474836 47	
	To set maximum allowable velocity. Limited by 6080.										

Indov	Label	Maximum motor velocity			Unit	R/min	Structure	VAR	Туре	UInt 32
Index 6080h	Access	R W	Mappin g	RPDO	Mode	F	Range	0~214 74836 47	Default	6000
	To set the n	maximum allowable moto			r velocity	<i>I</i> .				

Indov	Label	Profile velocity			Unit	Comman d unit/s	Structure	VAR	Туре	Ulnt 32
6081h	ndex		Mappin g	RPDO	Mode	PP	Range	0~214 74836 47	Default	10000
	To set targe	set target velocity. Limited by 60								

Indov	Label	Profile acceleration			Unit	Comman d unit/s²	Structure	VAR	Туре	UInt 32
Index 6083h	Access	R W	Mappin g	RPDO	Mode	PP/PV	Range	1~214 74836 47	Default	10000
	To set motor acceleration									

Index 6084h	Label	Profile deceleration			Unit	Comman d unit/s²	Structure	VAR	Туре	UInt 32
	Access	R W	Mappin g	RPDO	Mode	CSP/CSV /PP/PV/H M	Range	1~214 74836 47	Default	10000000
	To set moto	o set motor deceleration								

Indov	Label	Emergency stop deceleration			Unit	Comman d unit/s²	Structure	VAR	Туре	UInt 32
Index 6085h	Access	R W	Mappin g	RPDO	Mode	PP/PV	Range	1~214 74836 47	Default	10000
	To set the deceleration during an e					stop				

	Label	ibel Torque slope			Unit	%1/s	Structure	VAR	Туре	Ulnt 32
Index 6087h	Access	R W	Mappin g	RPDO	Mode	PT	Range	1~214 74836 47	Default	5000
	To set value	es foi	tendency	torque co	ommand					

Index	Label	el Encoder resolution			Unit	Encoder unit	Structure	VAR	Туре	UInt 32
608Fh-0 1	Access	R 0	Mappin g	TPDO	Mode	F	Range	1~214 74836 47	Default	0
	To set end	code	r resolution	1						

Index 6091h-0	Label	Electron	nic gear ratio tor		Unit	r	Structur e	VAR	Туре	Dint 32
1	Access	RW	Mapping	RPDO	Mode	F	Range	1-21474 83647	Defaul t	1
	To set ele	ctronic ge	ear ratio num	erator						
Index	Label		Electronic gear ratio denominator Unit r Structur e		VAR	Туре	Dint 32			
6091h-0 2	Access	RW	Mapping	RPDO	Mode	F	Range	1-21474 83647	Defaul t	1
	To set ele	ctronic ge	ear ratio den	ominato	r					
Index 6092h-0	Label	Number rotation	Number of pulses per Unit Comma S		Structur e	VAR	Туре	UInt 32		
1	Access	RW	Mapping	RPDO	Mode	F	Range	1~2147 483647	Defaul t	10000

If 6092h-01(Feed constant) is not equal to 608Fh(Position encoder resolution), then: Electronic gear ratio = Encoder resolution / 6092h-01

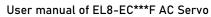
If 6092h-01(Feed constant) is equal to 608Fh(Position encoder resolution), then: Electronic gear ratio = 6091-01 / 6092h-01

Index	Label	Homing	g method		Unit	-	Structure	VAR	Туре	UInt 8	
6098h	Access	RW	Mapping	RPDO	Mode	F	Range	-6-37	Default	19	
	The table	below de	escribes the	velocity	, direction a	nd stop	ping condition	s of eac	h homing	methods.	
	Ref no.	Descrip									
		Velocity	Direction	Direction Stop							
	-6	Low	Negative								
	-5	Low	Positive	Whe	n torque rea	ched					
	-4	High	Negative	Inve	rsed when to	orque re	ached, after to	orque is	gone		
	-3	High	Positive				ached, after to				
	-2	High	Negative	Inve	rsed when to	orque re	ached, receiv	ed 1 st Z	-signal afte	er torque is	
				gone							
	-1	High	Positive	Inve	rsed when to	orque re	ached, receiv	ed 1 st Z	-signal afte	er torque is	

		gone		
	Direction	Deceleration point	Home	Before Z-signal
1	Negative	Negative limit switch	Motor Z-signal	Negative limit switch falling edge
2	Positive	Positive limit switch	Motor Z-signal	Positive limit switch falling edge
3	Positive	Homing switch	Motor Z-signal	Falling edge on same side of homing switch
4	Positive	Homing switch	Motor Z-signal	Rising edge on same side of homing switch
5	Negative	Homing switch	Motor Z-signal	Falling edge on same side of homing switch
6	Negative	Homing switch	Motor Z-signal	Rising edge on same side of homing switch
7	Positive	Homing switch	Motor Z-signal	Falling edge on same side of homing switch
8	Positive	Homing switch	Motor Z-signal	Rising edge on same side of homing switch
9	Positive	Homing switch	Motor Z-signal	Rising edge on same side of homing switch
10	Positive	Homing switch	Motor Z-signal	Falling edge on same side of homing switch
11	Negative	Homing switch	Motor Z-signal	Failling edge on same side of homing switch
12	Negative	Homing switch	Motor Z-signal	Rising edge on same side of homing switch
13	Negative	Homing switch	Motor Z-signal on other side of homing switch	Rising edge on other side of homing switch
14	Negative	Homing switch	Motor Z-signal on other side of homing switch	Falling edge on other side of homing switch
15				
16				
17-32		n 1-14, but deceleration		
33		egative direction, Homir		
34		ositive direction, Homin		nal
35-37	Set current	t position as homing poi	int	

Index	Label	High speed homing			Unit	Command unit/s	Structure	VAR	Туре	Ulnt 32
6099h-0	Access	R W	Mappin g	RPD O	Mode	НМ	Range	0~214 74836 47	Default	10000
	To set the s	speed	d used in h	oming						

Index	Label	Low speed homing			Unit	Command unit/s	Structure	VAR	Туре	UInt 32
6099h-0	Access	R W	Mappin g	RPD O	Mode	НМ	Range	0~214 74836 47	Default	5000
	To set the s	set the speed used in homing								


Indov	Label		ming accele celeration	eration	Unit	Command unit/s²	Structure	VAR	Туре	UInt 32				
Index 609Ah														
To set acceleration and deceleration used in homing														

Indov	Label	Pos	sition feedfo	orward	Unit	Command unit	Structur e	VAR	Туре	Int 32
Index 60B0h	Access	R 0	Mappin g	TPDO	Mod e	НМ	Range	-214748364 7~2147483 647	Defaul t	0
	To add po	sitio	n deviation	to targe	t positio	n				
Indox	Label	Vel	ocity feedfo	orward	Unit	Command unit/s	Structur e	VAR	Туре	Int 32
Index 60B1h	Access	R 0	Mappin g	TPDO	Mod e	CSP/CSV/P P/PV/HM	Range	-214748364 7~2147483 647	Defaul t	0
	To deviate	e vel	ocity comm	nand						
Index	Label	Tor	que feedfo	rward	Unit	0.1%	Structur e	VAR	Туре	Int 16
60B2h	Access	R W	Mapping	RPDO	Mod e	CSP/CSV/P P/PV/HM	Range	0x0~0xFFF F	Defaul t	0x0
	To add or	devi	ate torque	commar	nd					

Index	Label	Probe	function		Unit	-	Structur	VAR	Туре	UInt 16
60B8h	Access	RW	Mapping	RPDO	Mode	F	Range	0x0-0xFFF F	Default	0x0

Bit	Description	Details
0	Probe 1	0Disable
		1Enable
1		0Single trigger, triggered only when trigger signal
	Probe 1 trigger mode	is valid
		1—Continuous trigger
2	Probe 1 trigger signal selection	0—Probe 1 captured
		1Z signal
3	Reserved	-
4	Probe 1 rising edge enabled	0Disable
		1Enable
5	Probe 1 falling edge enabled	0Disable
	1 Tobe 1 failing eage enabled	1Enable
6-7	Reserved	-
8	Probe 2	0Disable
		1Enable
9		0Single trigger, triggered only when trigger signal
	Probe 2 trigger mode	is valid
		1—Continuous trigger
10	Probe 2 trigger signal selection	0—Probe 2 captured
		1Z signal
11	Reserved	-
12	Probe 2 rising edge enabled	0—Rising edge not latched
		1—Rising edge latched
13	Probe 2 falling edge enabled	0—Falling edge not latched
	1 1000 2 family edge enabled	1—Falling edge latched
14-15	Reserved	-

Index	Label	Probe	status		Unit	-	Structure	VAR	Туре	UInt 16
60B9h Access	DΛ	Mapping	TPDO	Modo	F	Pange	00x-0xF	Defaul	0v0	
60B9n AC	Access R0	wapping	g IPDO	Mode		Range	FFF	t	0x0	

Bit	Definition	Details
0	Probe 1	0Disable
		1Enable
1	Probe 1 rising edge latching	0—Rising edge not latched
		1—Rising edge latched
2	Probe 1 falling edge latching	0—Falling edge not latched
		1—Falling edge latched
3-5	-	-
6-7	-	-
8	Probe 2	0Disable
		1Enable
9	Probe 2 rising edge latching	0—Rising edge not latched
		1—Rising edge latched
10	Probe 2 falling edge latching	0—Falling edge not latched
		1—Falling edge latched
11-13	-	-
14-15	-	-

luday	Label		bbe 1 rising e	•	Unit	Command unit	Structur e	VAR	Туре	Int 32
Index 60BAh	Access	R 0	Mapping	TPD O	Mod e	F	Range	-21474836 47~214748 3647	Defaul t	0
	Shows p	ositio	n feedback a	at rising	g edge o	f probe 1 signal				
lu day.	Label		e 1 falling e ured positior	•	Unit	Command unit	Structur e	VAR	Туре	Int 32
Index 60BBh	Acces s	R0	Mapping	TPD O	Mod e	F	Range	-21474836 47~214748 3647	Defaul t	0
	Shows p	ositio	n feedback a	at fallin	g edge o	of probe 1 signa	I			
ludov	Label		e 2 rising edured position	•	Unit	Command unit	Structur e	VAR	Туре	Int 32
Index 60BCh	Acces s	R0	Mapping	TPD O	Mod e	F	Range	-21474836 47~214748 3647	Defaul t	0
	Shows p	ositio	sition feedback at rising		g edge o	g edge of probe 2 signal				
Index	Label		oe 2 falling e ured positior	-	Unit	Command unit	Structur e	VAR	Туре	Int 32
60BDh	Acces s	R0	Mapping	TPD O	Mod e	F	Range	-21474836 47~214748	Defaul t	0

						USEI III	anual of ELO-	EC FAC Servo	<u> </u>	
								3647		l
	Shows p	ositio	n feedback a	at fallin	g edge o	of probe 2 signal				l

Index	Label		tocol maxion	mum	Unit	Command unit/s²	Structur e	VAR	Туре	UInt 32			
60C5h	Access R Mappin RPDO Mode F Range 1~2147483 Default 100000												
	ACCESS	W	g	IXI DO	WIOGE	•	Kange	647	Delault	000			
	_												

To set upper limit of acceleration.

Access W PPDO Mode F Range Default Access W PRODE Mode F Range Access Republic Republic Range Ra	Index	Label		tocol maxi eleration	mum	Unit	Command unit/s²	Structur e	VAR	Туре	UInt 32
	60C6h	Access	R	Mappin	RPDO	Mode	F	Pange	1~2147483	Default	100000
W g 647 000		Access	W	g	IN DO	WIOGE	1	ivalige	647	Delault	000

To set lower limit of acceleration.

Index	Label		e 1 rising ed red count(s)	•	Unit	-	Structur e	VAR	Туре	UInt 16
60D5h	Access	R0	Mapping	TPDO	Mode	F	Range	0~65535	Default	0

Shows the number of times probe 1 rising edge latched.

Index	Label		e 1 falling edured count(s	•	Unit		Structur e	VAR	Туре	UInt 16
60D6h	Access	R0	Mapping	TPDO	Mode	F	Range	0~65535	Default	0

Shows the number of times probe 1 falling edge latched.

Index	Label		Probe 2 rising edge captured count(s)			ı	Structur e	VAR	Туре	UInt 16
60D7h	Acces s	R0	Mapping	TPDO	Mode	F	Range	0~65535	Default	0

Shows the number of times probe 2 rising edge latched.

Index	Label		e 2 falling edured count(s	•	Unit	-	Structur e	VAR	Туре	UInt 16
60D8h	Acces s	R0	Mapping	TPDO	Mode	F	Range	0~65535	Default	0
	Shows the number of times probe 2 fa					latche	ed.			

Index	Label	Max.	torque in po tion	ositive	Unit	0.1%	Structur e VAR		Туре	UInt 16
60E0h	Acces s	R W	Mapping	RPDO	Mode	F	Range	0~65535	Default	3000

To set the maximum torque of servo driver in positive direction

Index	Label	Max.	torque in ne	egative	Unit	0.1%	Structur e	VAR	Туре	UInt 16
60E1h	Acce ss	R W	Mapping	RPDO	Mod e	F	Range	0~65535	Default	3000
	To set t	o set the maximum torque of s				r in negative	direction			
Index	Label	Actual following error			Unit	Comman d unit	Structur e	VAR	Туре	Int 32
Index 60F4h	Acce	R0	Mapping	TPD O	Mod e	CSP/PP/ HM	Range	-21474836 47~214748 3647	Default	0
	Shows	positio	n following	error	1	1	1	1	ı	1

Indov	Label		Position loop velocity output			Comman d unit/s	Structure	VAR	Туре	Int 32
Index 60FAh	Acces s	R0	Mapping	TPDO	Mode	CSP/PP/ HM	Range	-21474836 47~21474 83647	Defaul t	0

Shows internal command velocity (Position loop output)

Indov	Label		Internal command position			Encoder unit	Structure	VAR	Туре	Int 32
Index 60FCh	Acces s	R0	Mapping	TPDO	Mode	CSP/PP/ HM	Range	-21474836 47~21474 83647	Defaul t	0

Shows internal command position of servo driver.

Index	Label	Input status			Unit	-	Structur e	VAR	Туре	UINT 32
60FDh	Acces s	R0	Mappin g	TPDO	Mode	CSP/PP/ HM	Range	-21474836 48~214748 3647	Default	0

The bits of 60FDh object are functionally defined as follow:

							ser	manuai	OTEL	_8-EC***F A	U 5	ervo			
	Bit31	Bit30) E	3it29	Bit	28		Bit27	,	Bit	26	Bit25		Bit24	
	Z signal	Rese	rve F	Reserve	Re	serve	:	Prob	e 2	Pro	be 1	BRAKE	Ξ	INP/V-	·C
		d	d	l	d									OIN	
														/TLC	
	Bit23	Bit22		Bit21	Bit			Bit19		Bit		Bit17		Bit16	
	E-STOP	Rese		Reserve	Re	serve	:	Rese	rve		serve	DI14		DI13	
		d	С		d			d		d					
	Bit15	Bit14		3it13	Bit			Bit11		Bit		Bit9		Bit8	
	DI12	DI11		0110	DIS			DI8		DI7		DI6		DI5	
	Bit7	Bit6		3it5	Bit			Bit3		Bit		Bit1		Bit0	
	DI4	DI3		DI2	DI1			Rese d	rve	HO	ME	POT		NOT	
Index	Label	Outpu	ut valid		ı	Un		-		Structi	ure	VAR		Туре	Ulnt 32
60FEh-0 1	Access	RW	Мар	ping F	RPDO	Мо	de	F	F	Range		0x0~0x7F FFFFF	F	Defau	lt 0x0
	The bits of	60FEh	object	are func	tional	ly def	fine	ed as	follo	ow:					
	Bit														
	Sub-ind	31~2	21	21	20)		19		18		17		16	15~0
	ex	0			_`			. •		. •				. •	
	ex _			D O O		_						D 000			
	01h	Rese		DO6	DC			DO4		DO3		DO2		DO1	Reserve
	• • • • • • • • • • • • • • • • • • • •	ed		valid	val	id	'	valid		valid	ı	valid		valid	d
Index	Label	Outpu	ut enab	led	U	nit	-			ctur	VAF	₹		Туре	UInt 32
60FEh-0								е							
2	Access	R	Mappir	ו RPD	_ M	ode	F	ь	ang	a o	0x0	~0x7FFFF	F	Defau	I 0xFFFF
2	Access	W g	ĺ	KFD		Jue	•	'	arı	ge	FF			t	0000
	The bits of	a 60FE	Eh objed	ct are fur	nction	ally d	lefii	ned a	s fc	ollow:					
	Bit		•												
	Sub-ind	A 3	1~21	21		20		19	1	18	Ω	17		16	15~0
			1~21			20		13	'	'	J	17		10	13~0
	X														
				DO6		DO5		DO	1	DC	73	DO2		DO1	
	201	Re	eserve												Reserve
	02h		d	enable	e e	nable	,	enal		ena		enable	e	nable	d
			-	d		d		d		C	l	d		d	
					ı							<u> </u>	l		
					1		<u> </u>	mma	_ [

Index	Label	Targ	Target velocity			Comman d unit	Structure	VAR	Туре	Int 32
60FFh	Acces s	R W	Mapping	RPDO	Mod e	CSV/PV	Range	-2147483647 ~214748364 7	Defaul t	0
	Shows set target velocity. Limited by 6080h									

Index	Label	Supported operation modes			Unit -		Structure	VAR	Туре	Ulnt 32	
6502h	Acces s	R0	Mapping	TPDO	Mod e	F	Range	0x0~0x7FFF FFFF	Defaul t	0x0	
	Shows the control modes supported by the servo drive.										

Chapter 4 Servo Drive Operation

4.1 Get Started with Driver Operation

4.1.1 Checklist before operation

No.	Description
	Power supply
1	The voltage of main and control circuit power supply is within rated values.
2	Power supply polarity is rightly connected.
	Wiring
1	Power supply input is rightly connected.
2	Driver's power output UVW matches UVW terminals on the main circuit.
3	No short circuit of driver's input and output UVW terminals.
4	Signal cables are correctly and well connected.
5	Drivers and motors are connected to ground
6	All cables under stress within recommended range.
7	No foreign conductive objects inside/outside the driver.
	Mechanical
1	Driver and external holding brake are not place near combustibles.
2	Installations of driver, motor and axis is fastened.
3	Movement of motors and mechanical axes are not obstructed.

4.1.2 Power On

Connect 380V power supply into main power supply R, S, T terminals and 220V power supply into control circuit power supply L1C, L2C. After power on, light indicator will light up and front panel will display **rEAdY**, then LED initial status will be displayed. Driver is ready for operation if no alarm occurs.

4.1.3 Trial Run

Servo drive must be disabled before performing trial run. For safety precautions, please JOG under minimal velocity.

-7.	late	3 C L	-	- N		\sim	7
NA S	45-14	-			-11		

No	Parameters	Label Set value		Unit	
1	PA0.01	Control mode settings	9	/	
2	PA6.04	JOG trial run command velocity	User defined	r/min	
3	PA6.25	Trial run acc-/deceleration time	User defined	ms/1000rpm	

- Please make sure the mechanical axis is within the range of motion and travelled distance should not be too long to avoid collision.
- Set optimal velocity and acceleration for trial run (not too high!)
- Do not modify any gain related parameters during motion to avoid vibration.

Please refer to "Section 3.5 AF_Vog Trial Run" for detailed explanations on how to perform trial run using front panel operation

4.1.4 Motor rotational direction settings

Motor rotational direction can be changed through Pr0.06 without changing the polarity of the input command.

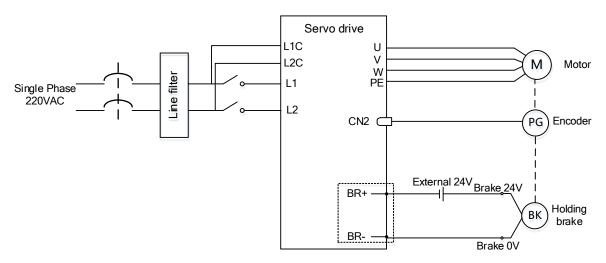
D. 0.00	Name	Command polarity inversion		Mode						F	
Pr0.06	Range	0 ~ 1	Unit	_	Default	0	Index	Index		2006h	
	Activation	After restart									
Lipped to allow the motational dispetion of the master											

Used to change the rotational direction of the motor.

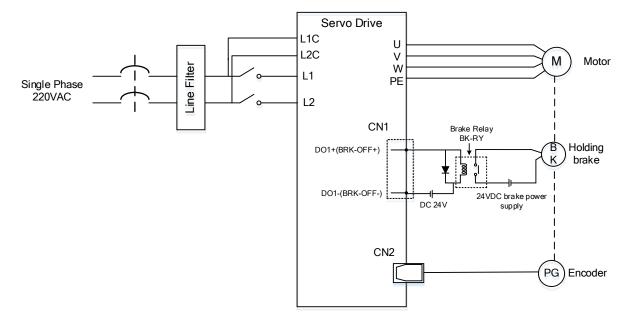
Set value	Details			
0	Polarity of the command is not inversed. The direction of rotation is			
0	consistent with the polarity of command.			
	Polarity of command is inversed. The direction of rotation is opposite to the			
1	polarity of command.			

Note: Rotational direction of the motor is recommended to be set through object dictionary 607E. However, Pr0.06 has higher priority than object dictionary 607E. 607E only takes effect when Pr0.06 = 0.

4.1.5 Holding Brake Settings


Holding brake is designed to hold the axis in position to prevent it from sliding due to applied external forces when the driver is disabled. Holding brake is optional and depends on the model of motor chosen for the application.

- Please only use holding brake when motor is stopped. No applicable when motor is in motion.
- Holding brake coil has no polarity.
- Motor should be disabled after stopped.
- There is some noise when motors with brake are in motion but that doesn't affect its functionality.
- Magnetic sensors might be affected when the holding brake is on. Please be aware.



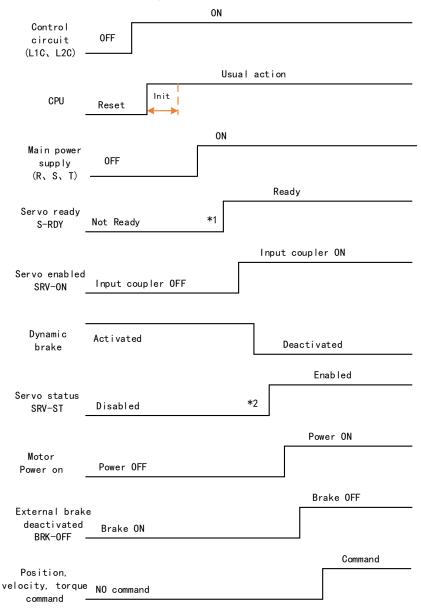
Holding brake wiring diagram

1. Using internal holding brake output port X3 (Easy wiring, no need for an extra relay)

2.Connect to the DO(BRK+/BRK-)

4.1.6 Servo Running

1. Enable servo driver


Check if CN3/CN4 is connected properly. Servo driver is in ready mode. Motor is stopped and holding brake is activated. Front panel display shows 402 state machine = Operational, EtherCAT communication status = operational, Running mode = 8, servo is in stop mode.

- 2. Motor starts to move after command input
- i. On first time operation, please use suitable command at low velocity. Confirm if motor is working normally.
- ii. Check if motor rotational direction is correct. If not, please check input command or parameter settings. (Pr0.06).
- iii. If motor is working normally, motion data such as motor rotational velocity "d01SP" and actual torque feedback "d04tr" can be monitored on the front panel or through Motion Studio.

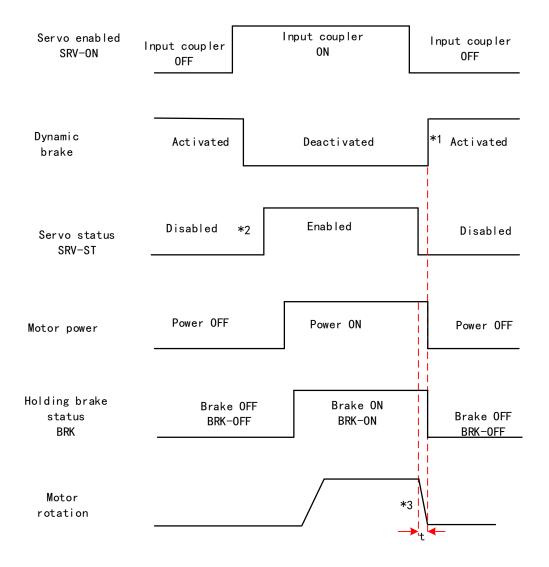
3. Power on sequence diagram

Please enter servo status, position, velocity, torque command as sequence diagram above.

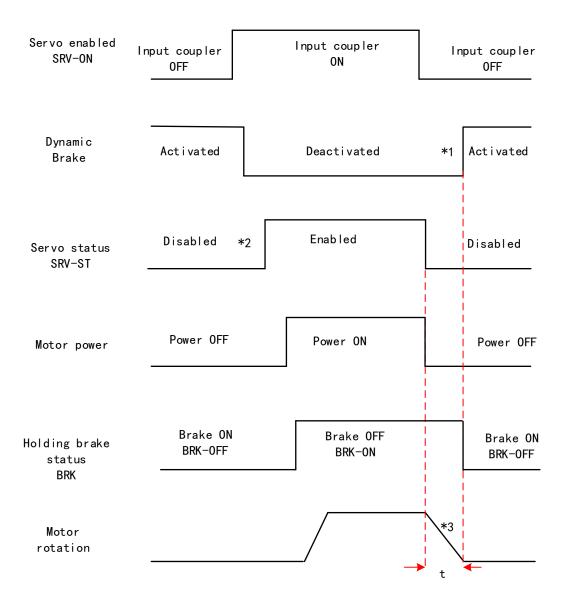
- ** 1. S-RDY signal is given after CPU initialization and main power supply powered on.
- 2. SRV-ST signal is received when servo driver is enabled. Command input is not allowed yet.

4.1.7 Servo stop

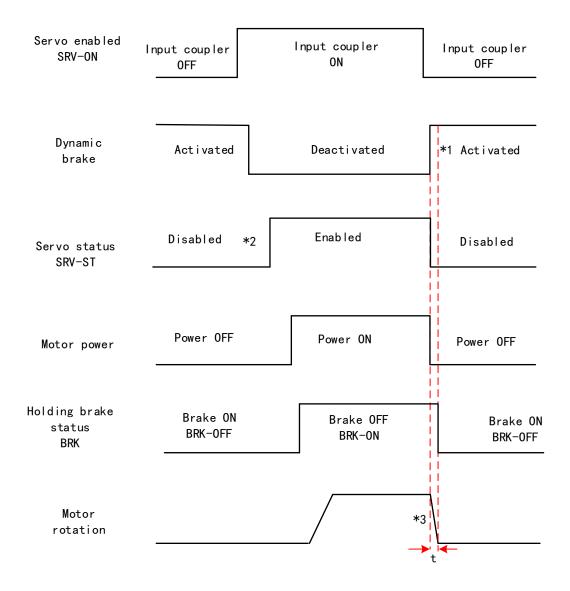
Servo stopping are of 3 different methods: Servo braking method, free stopping method, dynamic braking method.


Stopping method	Description	Details
Servo braking	Servo driver delivers braking torque in	Quick stopping but mechanical impact
	opposite direction	might exist
Free stopping	Motor power cut off. Free to move until	Smooth deceleration, low mechanical
	velocity = 0. Affected inertia, friction and	impact but slow stopping
	other factors	
Dynamic braking	Brake activated when in motion	Quick stopping but mechanical impact
		might exist

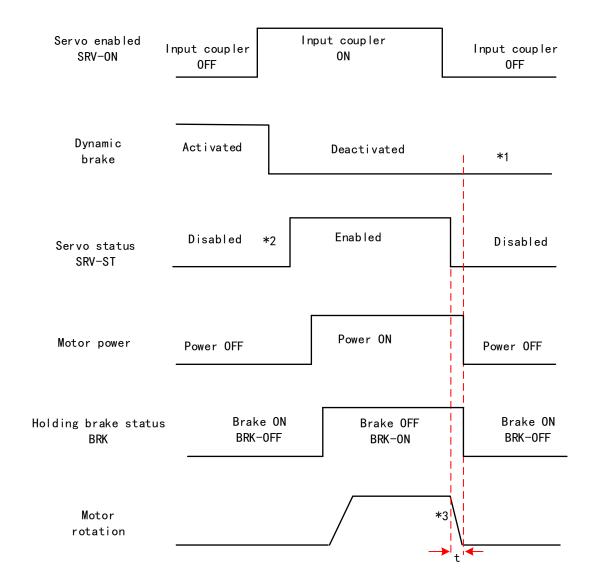
Stopping status	Status after stopped		
Free running	Motor is powered off, rotor is free to rotate		
Dynamic braking	Motor is powered off, rotor is not free to rotate		
Holding brake stopping	Motor axis is locked, cannot rotate freely		


Motor stopping (Servo disabled) - Sequence Diagram

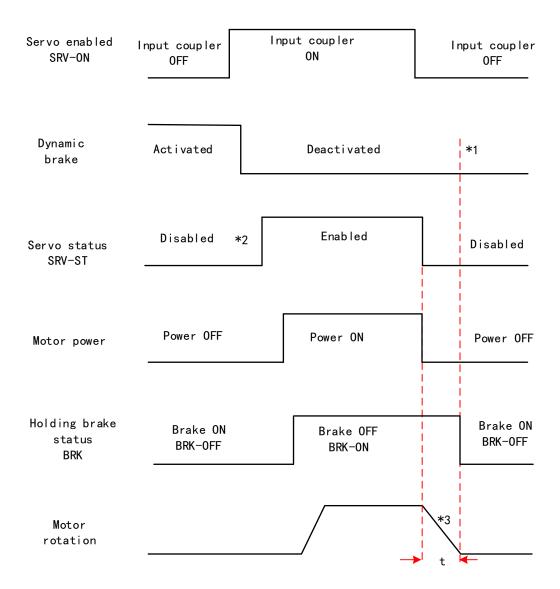
Servo braking method. Status after stopping: Dynamic braking



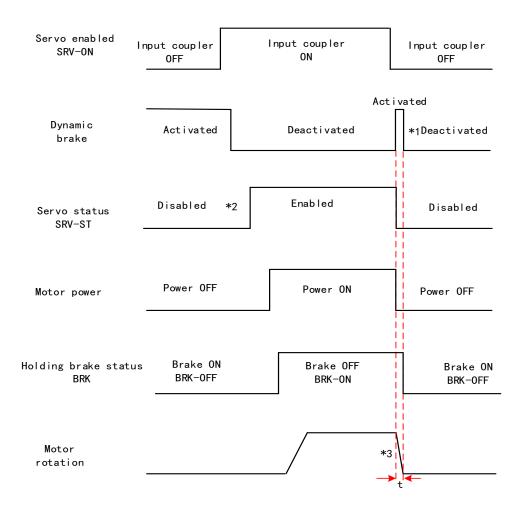
Free stopping method. Status after stopping: Dynamic braking



Dynamic braking method. Status after stopping: Dynamic braking

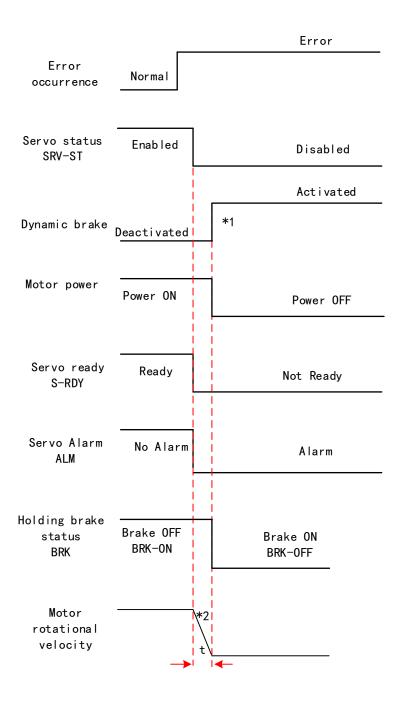


Servo stopping method. Status after stopping: Free running

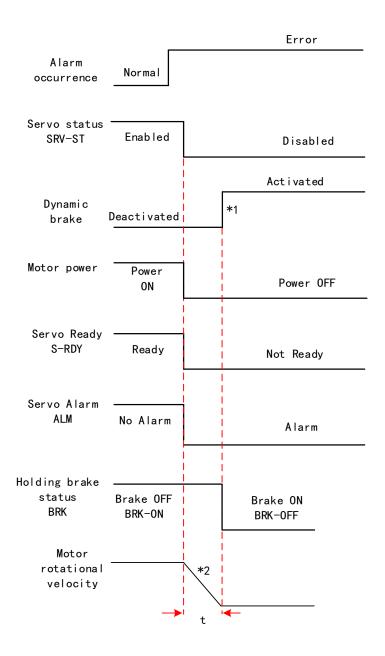


Free stopping method. Status after stopping: Free running

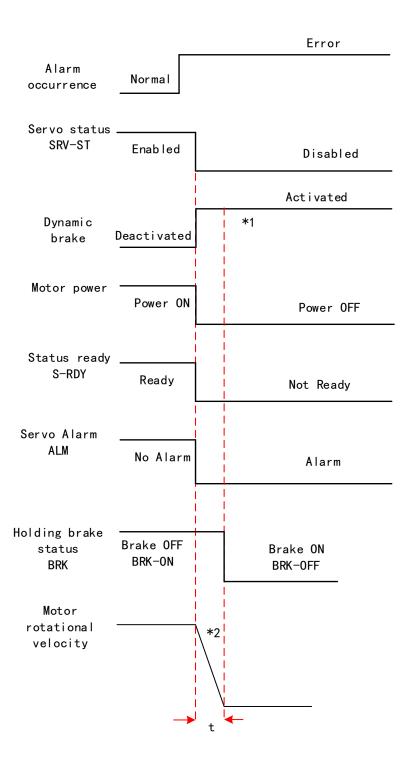
Dynamic braking method. Status after stopping: Free running



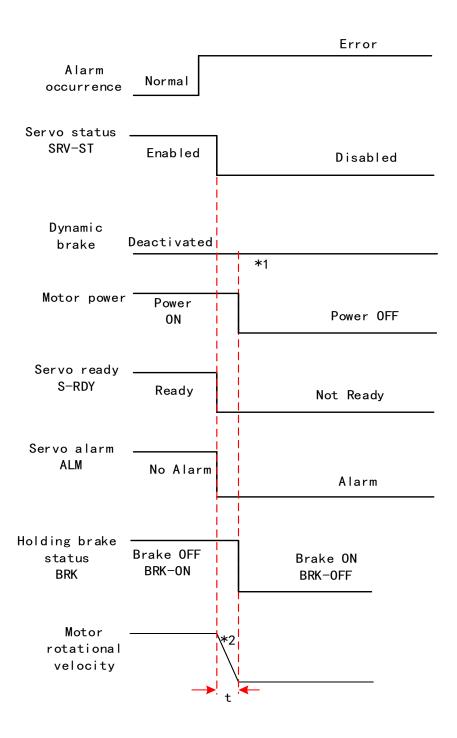
- ** 1. Status after stopping is as defined in Pr5.06.
 - 2. SRV-ST signal is received when servo driver is enabled. Command input is not allowed yet.
- 3. Servo stopping method is as defined in Pr5.06; braking torque in opposite direction to decelerate the motor is as defined in Pr5.11. Deceleration time t is determined by whichever comes first between time set in Pr6.14 and time needed for motor to drop below velocity set in Pr4.39. After deceleration time t, dynamic braking will be off and holding brake signal will be set to OFF (Holding brake is activated. Although BRK-OFF signal is valid, actual activation of holding brake is dependent on whether the motor comes with holding brake).
- 4. BRK-ON signal doesn't indicate the activation of holding brake but the validation of the signal. Holding brake is not applied when BRK-ON signal is valid. Same idea goes for BRK-OFF signal.


Stopping when alarm occurs – Sequence Diagram

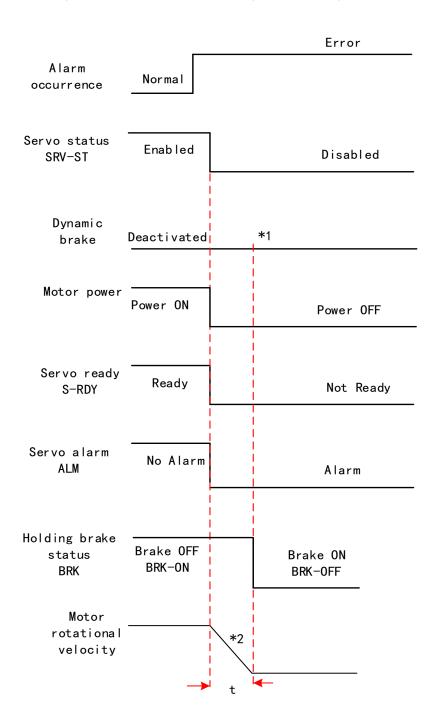
Servo braking method. Status after stopping: Dynamic braking



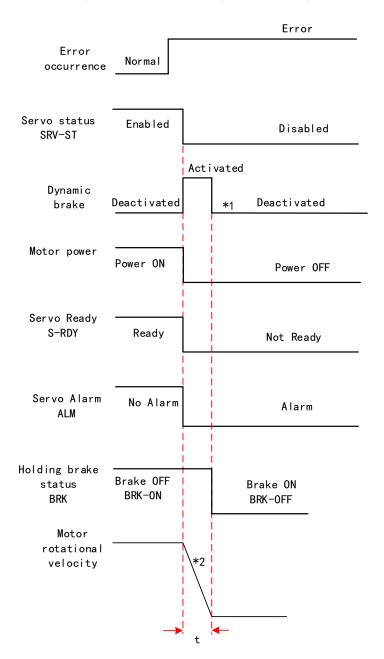
Free stopping method. Status after stopping: Dynamic braking



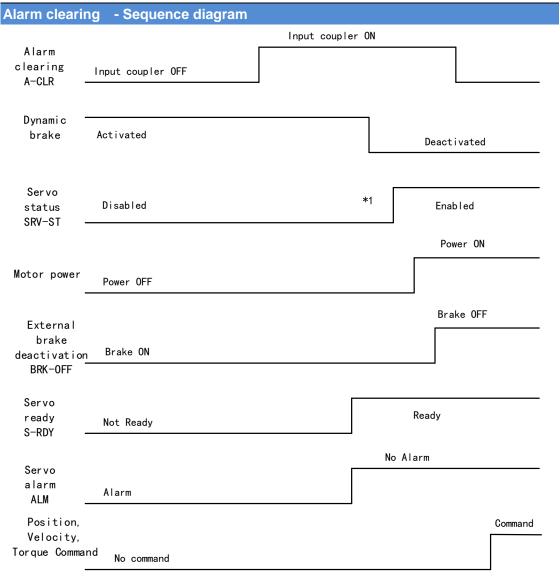
Dynamic braking method. Status after stopping: Dynamic braking



Servo braking method. Status after stopping: Free running



Free stopping method. Status after stopping: Free moving


Dynamic braking. Status after stopping: Free moving

** 1. Status after stopping is as defined in Pr5.10.

- 2. Servo stopping method is as defined in Pr5.10. Deceleration time t is determined by whichever comes first between time set in Pr6.14 and time needed for motor to drop below velocity set in Pr4.39. After deceleration time t, dynamic braking will be off and holding brake signal will be set to OFF (Holding brake is activated. Although BRK-OFF signal is valid, actual activation of holding brake is dependent on whether the motor comes with holding brake).
- 3. BRK-ON signal doesn't indicate the activation of holding brake but the invalidation of the signal. Holding brake is not applied when BRK-ON signal is valid. Same idea goes for BRK-OFF signal.

^{** 1.}SRV-ST signal is received when servo driver is enabled. Command input is not allowed yet

^{2.} BRK-OFF signal doesn't indicate the deactivation of holding brake but the invalidation of the signal. Holding brake is applied when BRK-OFF signal is invalid.

4.2 Electronic gear ratio

When loaded axis moved for 1 command unit, it corresponds to motor encoder unit which is converted in more comprehensible physical units such as µm. The use of electronic gear ratio is to turn the movement in physical units to required pulse count equivalency.

$$Electronic \ gear \ ratio = \frac{Rotor \ movement \ (Encoder \ unit)}{Loaded \ axis \ movement \ (Command \ unit)}$$

Rotor might be connected to load through reducer or other mechanical structures. Hence, the gear ratio is closely related to reducer gear ratio, position encoder resolution and mechanical dimensions related parameters.

Electronic gear ratio =
$$\frac{\text{Encoder resolution}}{\text{Loaded axis resolution}}$$

Electronic gear can be set through Pr0.08. If Pr0.08 \neq 0, Pr0.08 is valid. If Pr0.08 = 0, object dictionary 6092-01 is valid.

Command pulse count per motor revolution needs to be \geq Encoder Pulse Count per Revolution / 8000.

EL8-EC series comes with motors with 23-bit encoder. Pulse count per revolution for 23-bit encoder = 8388608. From the condition above, the command pulse count per motor revolution for 23-bit encoder ≥ 1049.

	Name	Command p		ounts	Mode						F
Pr0.08	Range	0~838860 8	Uni t	P-	Default	0	Index	(2008h	1
	Activation	After restart									
	Pulses per revolution can be set using object dictionary 608F, 6091, 6092. However, Pr0.08 has higher priority.								ias		

Index	Name	Encod	Encoder resolution Unit			Encod	Encoder unit		Structure		Тур	Туре		UInt 32	
608Fh-0 1	Access	R N	lappin g	TPDC	Mode	e F		Ra	Range		14 36 De	fault	0		
To set encoder resolution															
Index	Name	Electro numer	onic gea	ar ratio		Unit	r		Structur e		'AR	Тур	е	Dint 32	
6091h-0	A	DW	Man			Mada	_		Danas	1	-21474	1474 Defau		4	
1	Access	RW	Mapping RPDO		RPDO	woae	Mode F		Range		3647	t		1	
	To set ele	ctronic	gear rat	io nume	erator										
Index	Name	Electro	onic gea	ar ratio		Unit	r		Structu	r \	'AR	Тур	е	Dint	

						OSEI IIIaiiu	at of LLo-LC	I AC SEIVE	<u>,</u>		
6091h-0		denomi	nator				е			32	
2	A	RW	Manning	RPDO	Mode	F	Dongo	1-21474	Defaul	1	
	Access	KVV	Mapping	KPDO	wode	Г	Range	83647	t		
	To set electronic gear ratio denominator										
Indox	Mana	Number of pulses per			1114	Comma	Structur	\/AD	Time	UInt	
Index 6092h-0	Name	rotation			Unit	nd unit/r	е	VAR	Type	32	
1	A	RW	Manning	RPDO	Mode	F	Dongo	1~2147	Defaul	10000	
	Access	I LYVV	Mapping	KPDO	wode	Г	Range	483647	t	10000	

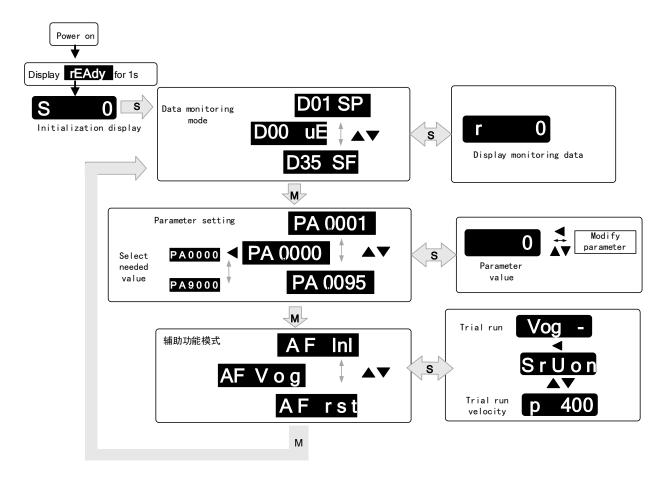
If 6092h-01(Feed constant) is not equal to 608Fh(Position encoder resolution), then: Electronic gear ratio = Encoder resolution / 6092h-01

If 6092h-01(Feed constant) is equal to 608Fh(Position encoder resolution), then: Electronic gear ratio = 6091-01 / 6092h-01

4.3 Front Panel

Servo Drive front panel consists of 5 push buttons, a 8-segments display and 5 green LED as warning indicators. Can be used for displaying of status, alarms, functions, parameters setting and auxiliary functions.

Front panel


Buttons and functions

Label	Symbol	Function				
Display	,	Consists of 5 push buttons, a 8-segments display and 5 green				
Display	,	LED as warning indicators				
		To switch between 3 modes:				
		1. Data monitoring mode: To monitor changes of motion data				
Mode	M	values				
Mode		2. Parameters setting mode: To set parameters				
		3. Auxiliary functions mode: To operate common functions, such				
		as trial run, alarm clearing				
Enter	S	To enter or confirm				
Up	A	To switch between sub-menus / Increase				
Down	▼	To switch between sub-menus / Decrease				
Left	■	To switch between values				

4.4 Panel Display and Operation

4.4.1 Panel Operation

Flow diagram of panel operation

- (1) **rEAdY** will be displayed for about 1 second after driver is powered on. Then, automatically enters data monitoring mode and displays initial data value. Otherwise, alarm code will be displayed if error occurs.
- (2) Press M key to switch between modes.
 Data monitoring mode → Parameters setting mode → Auxiliary functions mode
 Alarm code will be displayed regardless of any mode if alarm occurs. Press M to switch to other modes.
- (3) Press ▲ or ▼ to select the type of parameters in data monitoring mode. Press S to confirm.

Front Panel Locking

To prevent any misuse of the front panel, it can be locked. Limitations when locked are as shown below.

Mode	Limitation				
Data monitoring	Not limited				
Parameters setting	Parameters can only be read,				
	not modified.				
Auxiliary functions	Not limited				

To lock and unlock the front panel

	Front Panel	Motion Studio
Lock	①Set Pr5.35 = 1. ②Restart driver. ③Front panel is now locked.	
Unlock	 Please refer to auxiliary function A F U n L Front panel is now unlocked. 	 Set Pr5.35 = 0. Front panel is now unlocked.

4.4.2 Data Monitoring Mode

EL7 series servo driver offers the function to monitor different types of data in data monitoring mode. After entering this mode, press **S** to monitor any data that starts with **d**. Press **S** again to get back to data monitoring mode and **M** to switch to any other modes.

Data list in data monitoring mode

No.	Label	Descriptions	Display	Unit	Data Format (x = numerical value)
0	d00uE	Position command deviation	d00uE	pulse	"XXXX"
1	d01SP	Motor velocity	d01SP	r/min	"r xxxx" – Motor actual velocity "F xxxx" – External encoder feedback velocity
2	d02CS	Position control command velocity	d02CS	r/min	"xxxx"
3	d03Cu	Velocity control command velocity	d03Cu	r/min	"xxxx"
4	d04tr	Actual feedback torque	d04tr	%	"XXXX"
5	d05nP	Feedback pulse sum	d05nP	pulse	"XXXX"
6	d06cP	Command pulse sum	d06CP	pulse	"xxxx"
7	d07	Maximum torque during motion	d07	/	" d xxxx " – Max torque % " V xxxx "- Average load ratio

				USEI III	anual of EL8-EC***F AC Servo
8	d08FP	Internal command position sum	d08FP	pulse	"xxxx"
9	d09cn	Control mode	d09Cn	/	Position: "Ct PoS" Velocity: "Ct SPd " Torque: "Ct trq"
10	d10lo	I/O signal status	d10 lo	/	-
11	d11Ai	Analog input	d11Ai	V	-
12	d12Er	Alarm cause and record	d12Er	/	" Er xxx " Alarm code
13	d13rn	Warning	d13rn	/	" H xxx " Warning code
14	d14r9	Regeneration load factor	d14r9	%	"xxx"
15	d15oL	Overload factor	d15oL	%	"L xxx" – Motor overload % "d xxx" – Driver overload %
16	d16Jr	Inertia ratio	d16Jr	%	"XXX"
17	d17ch	Motor not running cause	d17Ch	/	"CP xxx" Error code
18	d18ic	No. of changes in I/O signals	d18ic	/	"xxx"
19	d19	Internal use	d19	/	" XXXX"
20	d20Ab	CSP position command sum	d20Ab	pulse	" xxxx"
21	d21AE	Single turn encoder data	d21AE	pulse	"A xxxx" – motor encoder single turn data "F xxxx" – external encoder single turn data
22	d22rE	Multiturn encoder data	d22rE	r	" xxxx"
23	d23 id	485 received frame	d23id	/	"id xxx" "Fr xxx"
24	d24PE	Position deviation	d24PE	Unit	"A xxxxx" - Position deviation "F xxxx" - Full closed loop deviation (Command unit) "H xxxx" - Full closed loop deviation (Encoder unit)
25	d25PF	Motor electrical angle	d25PF	pulse	" xxxx"
26	d26hy	Motor mechanical angle	d26hy	pulse	" XXXX"
27	d27 Pn	Voltage across PN	d27Pn	V	" xxxx"
28	d28 no	Software version	d28no	/	"d xxx Servo software" "F xx Communication software" "p xxx Servo power rating" "C xx CPLD software"
29	d29AS	Internal usage	d29AS	/	"A xxxx" "F xxxx" – external encoder serial no.
30	d30NS	No. of times of encoder communication error	d30sE	/	"A xxxx" – Motor encoder communication error count "F xxxx" – External encoder communication error count
31	d31 tE	Accumulated uptime	d31tE	/	" XXXX"
32	d32Au	Automatic motor identification	d32Au	/	"r xxx Motor no." "E xxx Servo no."
33	d33At	Driver temperature	d33At	°C	" <mark>d xxx</mark> " – driver temperature

User manual of EL8-EC***F AC Servo

					ialidat of EE0-EC AC Servo
					"C xxx" – MCU
					temperature
34	d34	Servo status	d34	/	"xxx"
35	d35 SF	Internal usage	d35SF	/	"xxxxxx"
43	d43	External encoder Z-Phase counter	D43	/	"xxxxxx"
44	d44	External encoder pulse count per revolution	D44	pulse	"xxxxx"
45	d45	External encoder direction	D45	/	"xxxxxx"
46	d46	Position compared to current position	D46	/	"xxxxxx"
	ı	Following are parameter	s related	to Eth	erCAT bus
36	d36	Synchronizing cycle	d36dc	ms	"xxxxxx"
37	d37	No. of times of synchronization loss	d37sc	/	"xxxxxx"
38	d38	Synchronization Type	d38st	freer un/D C	"xxxxx"
39	d39	If DC is running	d39dr	/	"xxxxxx"
40	d40	Acceleration and deceleration status	d40sn	/	"xxxxxx"
41	d41	Object dictionary address	d41od	/	"xxxxxx" Index(4 bit)+subindex(2 bit)
42	d42	Object dictionary value	d42od	/	"xxxxxx" 1. If OD does not exist, ODNEXT is displayed. 2. If OD is out of range, ODRNG is displayed.

_08St

" is displayed after power on (When servo is not enabled).

Description of data monitoring function

When using the front panel to monitor data, data is divided in low/high bit and positive/negative.

. 2.

608850

 $\begin{array}{ll} \mbox{High bit: } \ 1^{st} \mbox{ and } 2^{nd} \ \mbox{values on the right has two decimal points} \\ \mbox{Low bit: } \ 1^{st} \mbox{ and } 2^{nd} \ \mbox{values on the right has no decimal point.} \end{array}$

. . 50

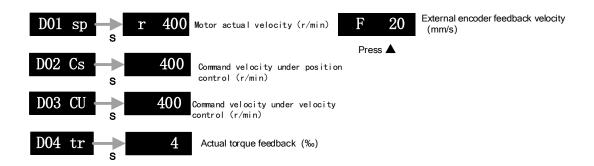
50

Positive: 1^{st} and 2^{nd} values on the left has no decimal point. Negative: 1^{st} and 2^{nd} values on the left has two decimal points

1. d00uE Position command deviation

Shows high bit and low bit of position deviation

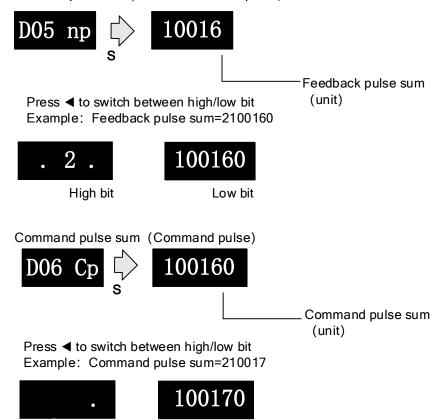
Positive: 1st and 2nd values on the left has no decimal point. Negative: 1st and 2nd values on the left has two decimal points

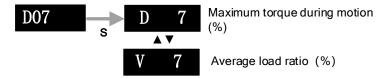

Press ◀ to switch between low and high bit Example: Position command deviation=260885

.2. 608850

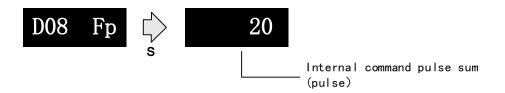
High bit: 1^{st} and 2^{nd} values on the right has two decimal points Low bit: 1^{st} and 2^{nd} values on the right has no decimal point.

2. d01SP Motor velocity, d02CS Position control command velocity, d03CU Velocity control command velocity, d04 tr Actual torque feedback

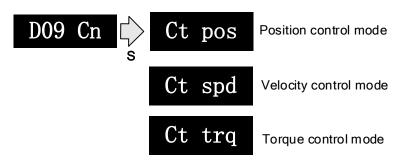

d04 tr reflects actual current.


3. d05nP Feedback pulse sum d06CP Command pulse sum

Feedback pulse sum(Encoder feedback pulse)


4. d07 Maximum torque during motion

High bit


Low bit

5. d08FP Internal command pulse sum

6. d09Cn Control mode

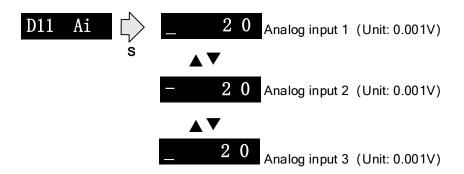


7. d10lo I/O signal status

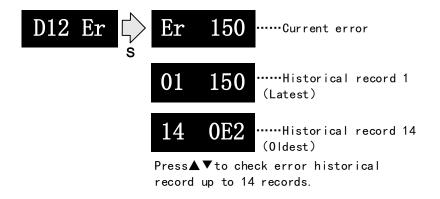
When the top half of the digital tube is lighted, the signal is valid; when the bottom half of the digital tube is lighted, the signal is not valid. Decimal points represent I/O status, input when lighted, output when not lighted.

Input: From low to high bit(Right to left) DI1,DI2....DI10. Decimal point is lighted to represent input signals.

In the example below, DI1, DI8 and DI10 input signal is valid; DI2-DI7, DI9 input signal is invalid.

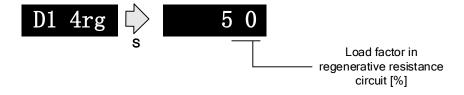

Output: From low to high bit(Right to left) DO1,DO2....DO10. Decimal point is not lighted to represent output signals.

In the example below, DO1 output signal is valid; DO2-DO10 output signal is invalid.



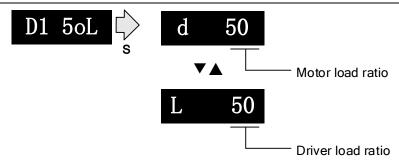
8. d11Ai Analog input

3 analog inputs can be monitored through d11. Left most bar at the top: 1st analog input; at the middle: 2nd analog input; at the bottom 3rd analog input. Points on 4th and 5th value means negative value.


9. d12Er Alarm cause and historical record

Please refer to the alarm list table in chapter 8 for alarms that can be recorded.

10. d14rg Regenerative load factor d15oL Overload factor


Regenerative load factor (Er120 might occur, if the value increases indefinitely)

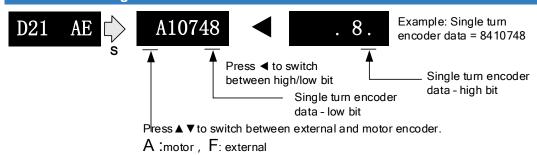
Overload factor (Er100 might occur, if d increases indefinitely

Er101 might occur, if L increases indefinitely)

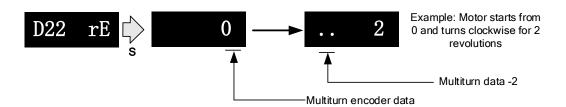
11 d16Jr Inertia ratio

Use auxiliary function AF_GL or Motion studio to measure the inertia ratio. The result will be shown on D1 6Vr, hold M to write the value in Pr0.04.

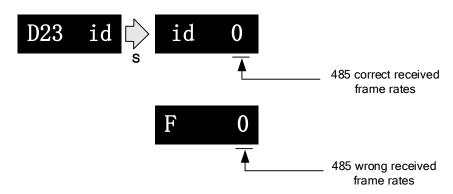
12. d17Ch Motor not running cause



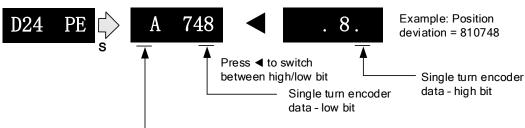
"d17Ch" Motor No Running Cause - Codes & Descriptions


Display	Code	Description	Content
СР	0	Normal	
СР	1	DC bus undervoltage	Check if DC bus voltage is too low on D27
СР	2	No SRV-ON signal	Servo-ON input (SRV-ON) is not connected to COM-
СР	3	POT/NOT input valid	Pr5.04 = 0, POT is in open circuit, velocity command is in positive direction NOT is in open circuit, velocity command is in negative direction
СР	4	Driver alarm	/
СР	5	Relay not clicked	Check input voltage
СР	6	Pulse input prohibited(INH)	Pr5.18=0
СР	7	Position command too low	No command or too low
СР	8	CL valid	Pr5.17=0, deviation counter connected to COM-
СР	9	Zero speed clamp valid	Pr3.15 = 1, Zero speed clamp input is open

13、d21AE Single turn encoder data d22rE Multiturn encoder data



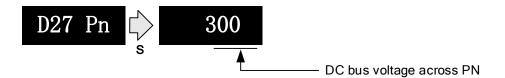
For 23-bit encoder, single turn encoder data = 0~8388607.Each value corresponds to certain position in a single revolution of the rotor, clockwise motion as negative, counter clockwise motion as positive. When counter clockwise single turn data > 8388607, multiturn data +1, clockwise single turn data < 0, multiturn data -1.



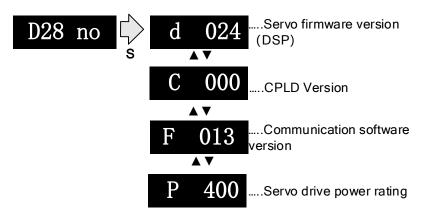
Multiturn encoder data range:-32768~+32767, As no. of revolution goes over range,32767 will jump to -32768、 -32767(counter clockwise); -32768 will jump to 32767、 32766 (clockwise)

14.d23id 485 received frame

15. d24PE Position deviation



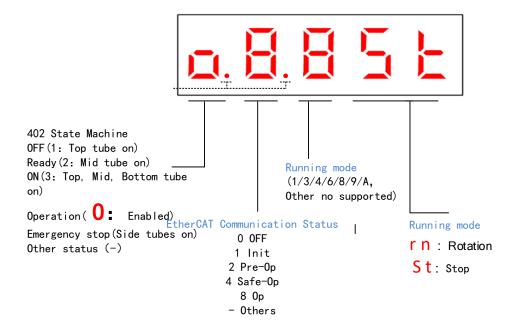
Press ▲ ▼to switch between external and motor encoder.


A: motor, F: Full closed loop (command unit), H: Full closed loop (encoder unit)

15. d27Pn DC bus voltage

16. d28no Software version

17. d31tE Accumulated operation time


Press ◀ to switch between high/low bit

18. d34 Servo driver status display

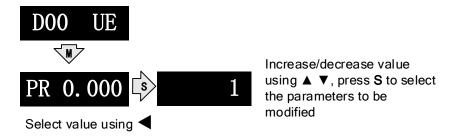
Driver status: 402 state machine, EtherCAT communication, running mode, running

Display setting at power on

■ Default setting for initialization display settings at power on is d34,if any other display is required, please set on Pr5.28.

Please refer to Pr5.28 for any display content required on the front panel during initialization

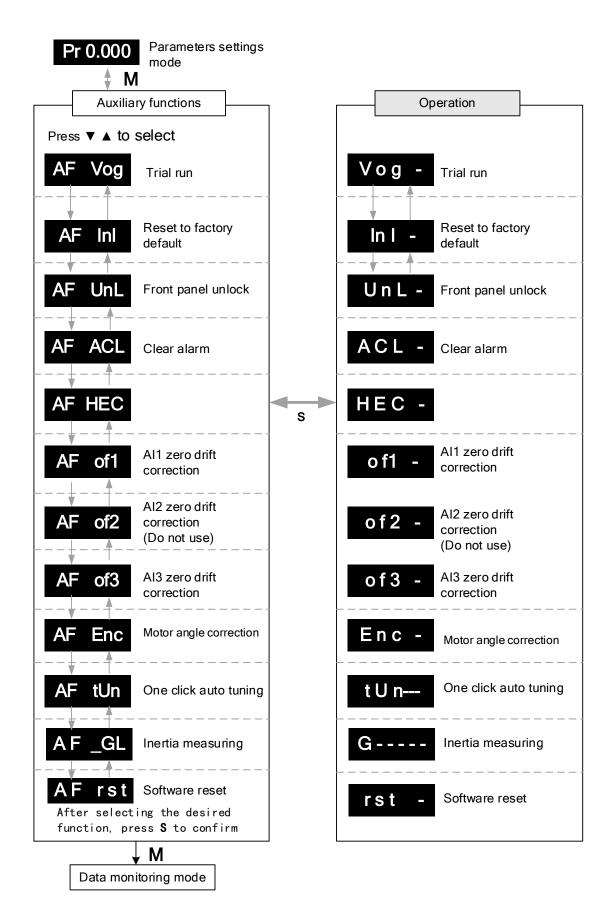
	Name	LED initial status			Mode						F
Pr5.28	Range	0~42	0~42 Unit — De		Default	34	Index		2528h		
	Activation	After restart									


To set content display on front panel of the servo driver at servo driver power on.

Set value	Content	Set value	Content	Set value	Content
0	Position command deviation	15	Overload rate	30	No. of encoder communication error
1	Motor speed	16	Inertia ratio	31	Accumulated operation time
2	Position command velocity	17	No rotation cause	32	Automatic motor identification
3	Velocity control command	18	No. of changes in I/O signals	33	Driver temperature
4	Actual feedback torque	19	Number of over current signals	34	Servo status
5	Sum of feedback pulse	20	Absolute encoder data	35	/
6	Sum of command pulse			36	Synchronous period
7	Maximum torque during motion	22	Multiturn position	37	No. of synchronous loss
8	/	23	Communication axis address	38	Synchronous type
9	Control mode	24	Encoder position deviation	39	Whether DC is running or not
10	I/O signal status	25	Motor electrical angle	40	Acceleration/Deceler ation status
11	/	26	Motor mechanical Angle	41	Sub-index of OD index
12	Error cause and history record	27	Voltage across PN	42	Value of sub-index of OD index
13	Alarm code	28	Software version		
14	Regenerative load rate	29	/		

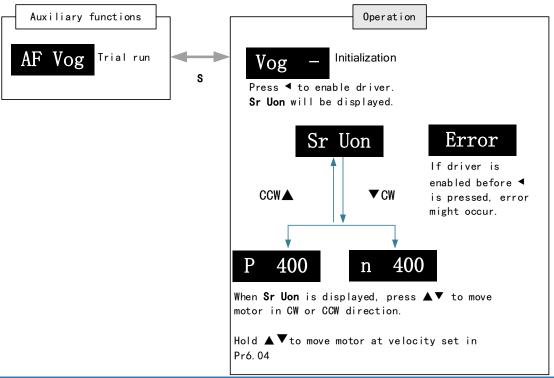
4.5 Parameters saving

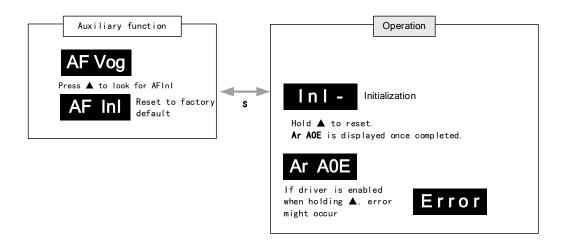
Save using driver's front panel


After modifying the selected parameter to desired values, press **S** to confirm and save the changes. If the parameter is modified but user does not want to save the changes, press **M** to exit without saving. Some parameter modifications will only take effect after the driver is restarted.

Save using object dictionary

Objects	Types	Explanations
0x1010-01	ALL parameters	Master device can save all parameters to EEPROM using 0x1010-01. When the driver detects 0x1010-01 data from master device as 0x65766173, driver will save current parameters to EEPROM. After saving, 1010-01=1.
0x1010-02	Communication parameters	Master device can save communication parameters to EEPROM using 0x1010-02. When the driver detects 0x1010-02 data from master device as 0x65766173, driver will save current parameters to EEPROM. After saving, 1010-02=1.
0x1010-03	402 parameters	Master device can save 402 parameters to EEPROM using 0x1010-01. When the driver detects 0x1010-03 data from master device as 0x65766173, driver will save current parameters to EEPROM. After saving, 1010-03=1.
0x1010-04	Manufacturer's parameters	Master device can save manufacturer's parameters to EEPROM using 0x1010-01. When the driver detects 0x1010-01 data from master device as 0x65766173, driver will save current parameters to EEPROM (including 0x2000 to 0x5FFF parameters and electronic gear ratio parameters)

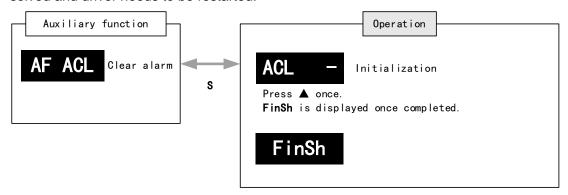

4.6 Auxiliary function


AF Vog Trial run

- Please disable servo driver before performing any trial run.
- Please don't modify gain related parameters during trial run to prevent any occurrence of mechanical vibrations.
- Only use trial run when Pr0.01 set to 0, 1, 6.
- Please check Pr6.04 (JOG velocity) and Pr6.25 (JOG acceleration) before running.
- > Press **S** to exit trial run.

AF Inl Reset to factory default

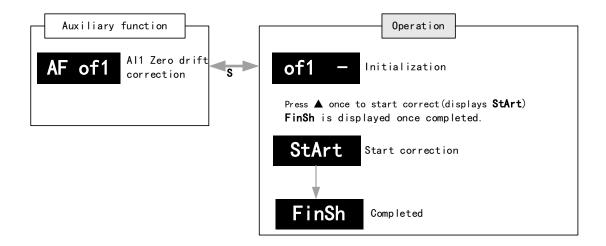
To reset parameters settings to factory default. Can be used to reset parameters using auxiliary function on front panel or using object dictionary.



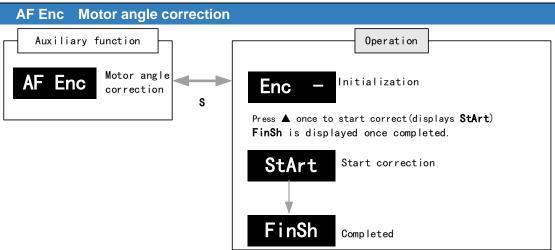
AF unL Front panel unlock Auxiliary Operation unL — Initialization FinSh is displayed after press A once. Front panel unlocked FinSh

AF ACL Clear alarm

Alarm can be cleared using this auxiliary function but before that, the error needs to be solved and driver needs to be restarted.

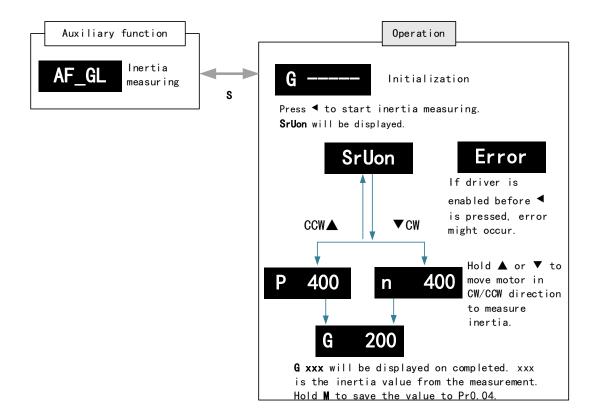


For alarms that can be cleared using this function, please refer to table in Chapter 8.


AF of1 - AF of3 Analog input Al1-3 zero drift correction

Auto adjustment of analog input zero drift settings

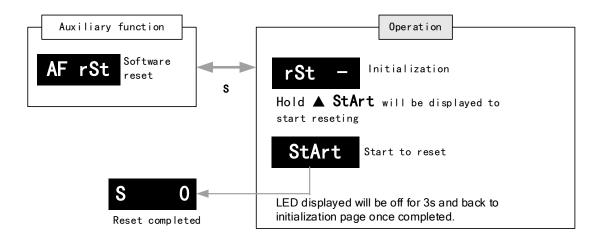
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
Analog	Parameter	(Zero	drift			
input	settings)					
Al1	Pr4.22					
Al2	Pr4.25					
Al3	Pr4.28					

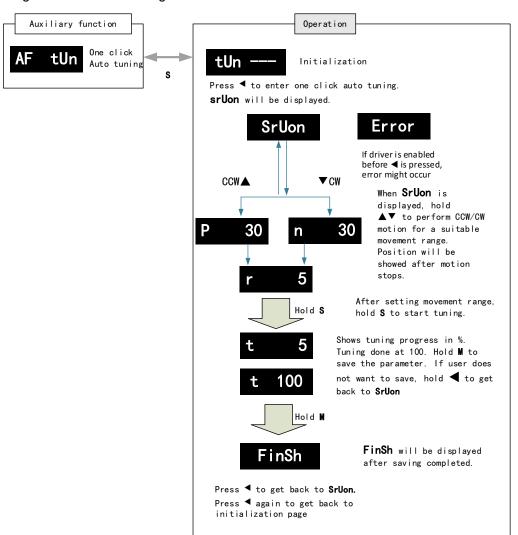


AF_GL Inertia measuring

Please make sure: 1. Velocity < 300RPM, average velocity duration < 50ms

2. Acceleration/Deceleration time < 500ms


Press **S** to exit and disable the driver once completed.


AF rSt Software reset

Software reset is used mainly on parameters modification that takes effect only after driver restart.

AF_tun One click auto tuning

One click auto tuning can be applied by operating the front panel. Set simple movement range and movement range has to be more than 0.5 motor revolution.

4.7 Front panel warning indicator

Warning indicator light status

- 1. Servo powered on but disabled: All 5 LEDs off
- 2. Servo powered on and enabled: All 5 LEDs lighted in cycles.
- 3. Warning status: All 5 LEDs lighted in accordance to assigned signals. Please refer to the table below.

Warning indicator	Parameter	Assignment	
LED 1	Pr4.74	Set value	Signal
LED 2	Pr4.75	[0]	Null
LLD Z	114.75	1	Negative limit switch
LED 3	Pr4.76	2	Battery low voltage
LED 3	F14.70	3	Overload
LED 4	Pr4.77	4	Torque limit
LED 4	F14.77	5	Positive limit switch
LED 5	Pr4.78		

Chapter 5 Control Mode

5.1 EL8-EC motion control step-by-step

- A. EtherCAT master device sends "control word (6040h)" to initialize the drive.
- B. Driver sends feedback "status word (6041h)" to the master device to indicate ready status (status word indication).
- C. Master device sends enable command (control word switch).
- D. The driver enables and sends feedback status to the master device.
- E. The master station sends homing command to home the axis. (Homing parameter and control word switch)
- F. Driver returns to home and sends feedback homed status to master device (status word indication)
- G. The master station sends the position mode command for position movement (position motion parameters and control word switch) or sends the velocity command for velocity movement (velocity motion parameters and control word switch).
- H. When the drive is finished executing the command (position command), EL8-EC feedbacks the position/velocity to the master device for monitoring during the motion.
- I. The master device sends commands for the next motion.

5.2 CIA402 State Machine

State machine switchover diagram

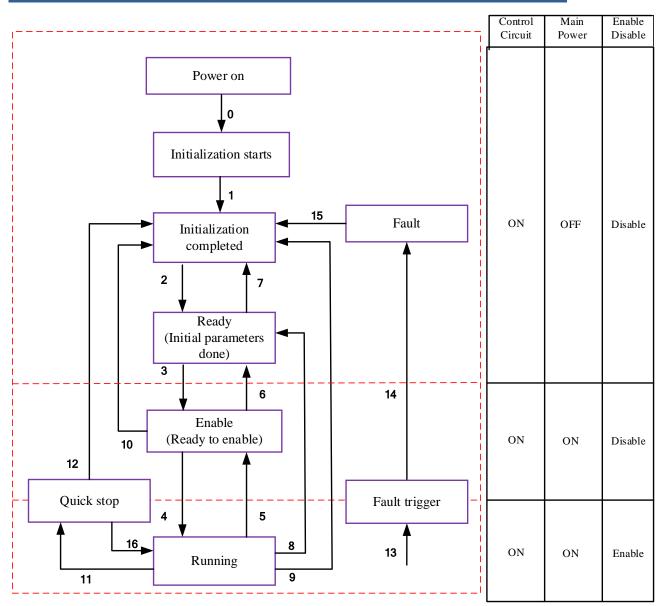


Figure 5.1 EL8-EC 402 State Machine switchover diagram

Table 5.1 Status description

Status	Description
Initialization starts	Driver powered on, initialization starts; Holding brake activated; Axis disabled
Initialization done	Initialization done; Parameters initialize, faultless; Axis disabled.
Ready	Parameter initialization done; Axis disabled.
Enable	Servo driver is ready to be enabled.
Running	Driver enabled, faultless
Quick stop	Quick stop activated
Fault triggered	Alarm not solved yet; Axis disabled.
Fault	Alarm solved. Waiting to switch from 402 state machine to Initialization starts; Axis disabled.

402 state machine switching is dependent on master device controlled servo driver control word (6040h)

CiA40	2 status switching	Control word 6040h	Status word 6041h Bit1-Bit9
0	Power on → Initialization	Transit automatically	0x0000
1	Initialization →Faultless	Transit automatically,	0x0250
		Enter 13 if fault occurs	
2	Faultless ▶Ready	0x0006	0x0231
3	Servo ready-➤ Waiting to enable	0x0007	0x0233
4	Waiting to enable ▶Running	0x000F	0x0237
5	Running→ Waiting to enable	0x0007	0x0233
6	Waiting to enable → Ready	0x0006	0x0231
7	Ready→ Faultless	0x0000	0x0250
8	Running → Ready	0x0006	0x0231
9	Running ►Faultless	0x0000	0x0250
10	Waiting to enable → Faultless	0x0000	0x0250
11	Running ▶Quick stop	0x0002	0x0217
12	Quick stop → Faultless	Transit automatically	0x0250
13	Fault stop	Transit automatically	0x021F
14	Fault stop ▶Fault	Transit automatically	0x0218
15	Fault →Faultless	0x80	0x0250
16	Quick stop ▶Running	0x0F	0x0237

5.3 Driver Control Mode Setting

5.3.1 Supported control mode (6502h)

EL8-EC supports seven modes, as defined in 6502h.

Bit	31~10	9	8	7	6	5	4	3	2	1	0
Mode	Reserve	CS	CS	CS	Reserve	Н	Reserve	Р	Р	Reserve	Р
iviode	d	Т	V	Р	d	М	d	Т	V	d	Р
1:Supporte d	0	1	1	1	0	1	0	1	1	0	1
			Des	scripti	on		Abbr.				

Description	Abbr.
Profile position mode	PP
Profile velocity mode	PV
Profile Torque mode	PT
Homing mode	НМ
Cyclic synchronous position	CSP
mode	
Cyclic synchronous velocity mode	CSV
Cyclic synchronous torque mode	CST

5.3.2 Operational mode setting (6060h) and Operational mode display (6061h)

The operation mode of the servo drive is set in 6060h. The operation mode of the servo drive is viewed in 6061h.

Bit	Description	Abbr.
1	Profile position mode	PP
3	Profile velocity mode	PV
4	Profile Torque mode	PT
6	Homing mode	НМ
8	Cyclic synchronous position mode	CSP
9	Cyclic synchronous velocity mode	CSV
10	Cyclic synchronous torque mode	CST

5.4 Common Functions for All Modes

5.4.1 Digital input setting and status display

Please refer to chapter 5 for more details on digital I/O input and polarity settings.60FDh object complies with IEC61800-200 standard input I/O status mapping object. 60FDh is set according to function as the table below shows.

Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
Z signal	Reserved	Reserved	Reserved	Touch	Touch	BRAKE	INP/V-COIN
				Probe 2	Probe 1		/TLC
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
E-STOP	Reserved	Reserved	Reserved	Reserved	Reserved	DI14	DI13
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
DI12	DI11	DI10	DI9	DI8	DI7	DI6	DI5
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
DI4	DI3	DI2	DI1	Reserved	HOME	POT	NOT

5.4.2 Digital output setting and control operation method

In addition to the internal operation of the servo system, EL8-EC also provides a function for the master device to operate digital I/O output of the servo driver.

If I/O output function is set up as master device control, master device can control servo driver digital I/O output through 60FEh object

Bit Sub-index	31~21	21	20	19	18	17	16	15~0
01h		DO6	DO5	DO4	DO3	DO2	DO1	
OIII	Dogoryod	valid	valid	valid	valid	valid	valid	Reserved
02h	Reserved	DO6	DO5	DO4	DO3	DO2	DO1	Keserved
0211		enabled	enabled	enabled	enabled	enabled	enabled	

5.4.3 Motor Rotational Direction

Rotational direction is defined in 607Eh.

Mode		Set value
Position Mode	PP HM CSP	0: Rotate in the same direction as the position command 128: Rotate in the opposite direction to the position command
Velocity	PV	0: Rotate in the same direction as the position command
Mode	CSV	64: Rotate in the opposite direction to the position command
Torque	PT	0: Rotate in the same direction as the position command
Mode CST		32: Rotate in the opposite direction to the position command
ALL		0: Rotate in the same direction as the position command
Modes		224: Rotate in the opposite direction to the position command

5.4.4 Stop Settings

EL8-EC provides quick stop function. Stopping is different under different modes.

Controlled by using object dictionary 605A.

lı	ndex	Name Quick stop option co			code	Unit	•	Structure	VAR	Туре	INT 16
6	05Ah	Access	RW	Mapping	_	Mode	ALL	Range	0~7	Default	2

Motor stops when quick stop command is given.

PP, CSP, CSV, PV

- 0 : To stop motor through Pr5.06. Status: Switch on disable, axis disabled.
- 1 : Motor decelerates and stops through 6084h. Status: Switch on disable, axis disabled.
- 2 : Motor decelerates and stops through 6085h. Status: Switch on disable, axis disabled.
- 3 : Motor decelerates and stops through 60C6h. Status: Switch on disable, axis disabled.
- 5 : Motor decelerates and stops through 6084h. Status: Quick stop
- 6 : Motor decelerates and stops through 6085h. Status: Quick stop
- 7 : Motor decelerates and stops through 60C6h. Status: Quick stop

НМ

- 0 : To stop motor through Pr5.06. Status: Switch on disable, axis disabled.
- 1 : Motor decelerates and stops through 609Ah. Status: Switch on disable, axis disabled.
- 2 : Motor decelerates and stops through 6085h. Status: Switch on disable, axis disabled.
- 3 : Motor decelerates and stops through 60C6h. Status: Switch on disable, axis disabled.
- 5 : Motor decelerates and stops through 609Ah. Status: Quick stop
- 6 : Motor decelerates and stops through 6085h. Status: Quick stop
- 7: Motor decelerates and stops through 60C6h. Status: Quick stop

CST

- 0 : To stop motor through Pr5.06. Status: Switch on disable, axis disabled.
- 1, 2: Motor decelerates and stops through 6087h. Status: Switch on disable, axis disabled.
- 3 : Motor decelerates and stops through torque = 0. Status: Switch on disable, axis disabled.
- 5, 6: Motor decelerates and stops through 6087h. Status: Quick stop
- 7 : Motor decelerates and stops through torque = 0. Status: Quick stop

When 402 state machine is disabled, the motor will stop freely.

When bit8(Halt) of 6040h is 1, the motor will stop with deceleration set in 6083h/6084h.

5.4.5 Position mode - Electronic Gear

EL8-EC position mode consists of cyclic synchronous position mode (CSP), protocol position mode (PP) and homing mode (HM), only in these three modes is the electronic gear valid.

Electronic gear ratio range is 0.001~8000(23-bit encoder), otherwise ErA00 might occur if over range (the warning is not saved, after modification to a reasonable range, alarm on operational panel will automatically disappear, but the 402 state will still be in the "error" state, write 0x80 into 6040h).

Method 1:

Electronic gear ratio setting is defined by 608Fh (Position encoder resolution). 6091h (Gear ratio), 6092h (Feed constant) to change the motor position. Only valid under pre-operational mode.

608Fh (Position encoder resolution) is the resolution of the encoder, which is read internally without additional setting. 6092h_01 represents the number of pulses that can be set for each revolution of the motor. 6091h_01/6091h_02 is real-time update effective.

Electronic gear subdivision method can be determined by modifying 6092h_01 (Feed constant)

- 1. If 6092h_01 (Feed constant) is not equal to 608Fh (Position Encoder resolution), then:

 Electronic gear ratio = encoder resolution / 6092h_01
- 2. If 6092h_01(Feed constant) is equal to 608Fh(Position encoder resolution), then: Electronic gear ratio = 6091_01/6092h_01

Electronic gear ratio range is 0.001~8000(23 bit encoder), 0.001~125(17 bit encoder)

Command pulse count per motor revolution needs to be \geq Encoder Pulse Count per Revolution / 8000.

EL7 series comes with motors with 17-bit and 23-bit encoder. Pulse count per revolution for 17-bit encoder = 131072; for 23-bit encoder = 8388608. From the condition above, the command pulse count per motor revolution for 17-bit encoder should be \geq 17; for 23-bit encoder \geq 1049.

Method 2:

Electronic gear can be set through Pr0.08. If Pr0.08 \neq 0, Pr0.08 is valid. If Pr0.08 = 0, object dictionary 6092-01 is valid.

Note: when the setting value exceeds this range, the error will be reported and automatically reset to the default value. The default values of 6091_01, 6091_02 and 6092_01 are 1, 1 and 10000.

5.4.6 Position Limits

The hardware limit is valid in all operational modes, and the software limit is valid only in the absolute operational mode of cyclic synchronous position mode (CSP) and profile position mode (PP)

The limit of the software is defined by 607Dh. The maximum position in the negative direction is defined in 607d-01h and the maximum position in the positive direction is defined in 607d-02h, the unit is consistent with the command unit.

The setting of object dictionary 0x5012-04 not only affects the homing offset of 607C, but also affects the software limit, 607D needs to be modified before the operational state

5012-04		Actual Positive Position Limit	Actual Negative Position Limit				
Bit2	Bit3	Actual Positive Position Limit	Actual Negative Position Limit				
0	0	607D-02 + 607C	607D-01 + 607C				
0	1	607D-02 - 607C	607D-01 - 607C				
1	X	607D-02	607D-01				

EL8-EC Software position limits valid conditions:

- 1. It can only be set in the pre-operational state of ESM. It is recommended to configure it by SDO when the system starts.
- 2. Only in the absolute mode of CSP and PP, in CSP mode, it is recommended to use the software limit function of the master station to achieve the fastest limit performance.
- 3. The incremental encoder motor is not effective until the homing process completed.
- 4. The setting rule is 607d-01h < 607d-02h, that is, the negative position limit value is less than the positive position limit value.

5.4.7 Control Word

Bit definition of Control Word 6040h.

Bit	15~1 1	10~9	8	7	6~4	3	2	1	0
Definition		_	Halt	Fault	Related	Operatio	Quick	Voltage	Switch
Delilillion		_	Tiail	reset	to modes	n enable	stop	output	on

		Bit7 a	nd Bit0 to E	Bit3			402 Ctoto
Command	7: Fault reset	3: Operation enable	2: Quick stop	1: Voltage output	0: Start	6040 Value	402 State machine *1)
Power off	0	×	1	1	0	0006h	2;6;8
Switch on	0	0	1	1	1	0007h	3*
Switch on	0	1	1	1	1	000Fh	3**
No voltage output	0	×	×	0	×	0000h	7;9;10;12
Quick stop	0	×	0	1	×	0002h	7;10;11
Operation enable	0	0	1	1	1	0007h	5
enable	0	1	1	1	1	000Fh	4;16
Fault reset	Rising edge	×	×	×	×	0080h	15

x is not affected by this bit state

^{*} indicates that this transition is performed in the device start state

^{**} indicates that it has no effect on the start state and remains in the start state

^{*1)} The state machine switch corresponds to figure 7.1

Definition of bit 8 and bit 6~4 in different operation modes are shown in the following table

		Operation Mode									
Bit	Profile Position (PP)	Profile Velocity (PV)	Profile Torque (PT)	Homing (HM)	Cyclic Sync Positio n (CSP)	Cyclic Sync Velocity (CSV)	Cyclic Sync Torque (CST)				
8	Stop with deceleration	Stop with deceleration	Stop with deceleratio	Stop with deceleration	-	-	-				
6	Absolute/ Increment	-	-	-	-	-	-				
5	Immediatel y trigger	-	-	•	-	-	-				
4	New Position	-	-	Start	-	-	-				

5.4.8 Status Word

Bit definition of Status Word 6041h.

Bit	Definition
15~14	Reserved
13~12	Related to modes
11	Position limit valid
10	Position arrival
9	Distance
8	Related to modes
7	Reserved
6	Not switch on
5	Quick stop
4	Voltage output
3	Fault
2	Operation enable
1	Switch on
0	Ready to switch on
0	

Bit 11 is valid when the software or hardware limit is in effect.

The combination of bit 6 and bit 3~0 represents the device state shown in following table

Combination of bit 6 and bit 3~0	Description
xxx,xxxx,x0xx,0000	Not ready to switch on
xxx,xxxx,x1xx,0000	Switch on disabled
xxx,xxxx,x01x,0001	Ready to switch on
xxx,xxxx,x01x,0011	Switch on
xxxx,xxxx,x01x,0111	Operation enabled
xxxx,xxxx,x00x,0111	Quick stop active
xxxx,xxxx,x0xx,1111	Fault reaction active
xxx,xxxx,x0xx,1000	Fault

 \mathbf{x} is not affected by this bit state

Definition of bit 8 and bit 13~12 in different operation modes are shown in the following table

	Operation Mode							
Bit	Profile Position (PP)	Profile Velocity (PV)	Profile Torque (PT)	Homing (HM)	Cyclic Sync Position (CSP)	Cyclic Sync Velocity (CSV)	Cyclic Sync Torque (CST)	
13	Position error is too large	-	-	Homing Process error	-	-	-	
12	-	Velocity is 0	-	Homing Process completed	Following valid	Following valid	Following valid	
8	Abnormal stop	-	-	Abnormal stop	Abnormal stop	-	-	

5.4.9 Synchronous cycle time setting

The default synchronous cycle time range of EL8-EC series is 250us – 10ms. Min value: 125us; Max value: 20ms. Please make sure the values set is the multiplier of 250us.

5.4.10 Driver Enabling

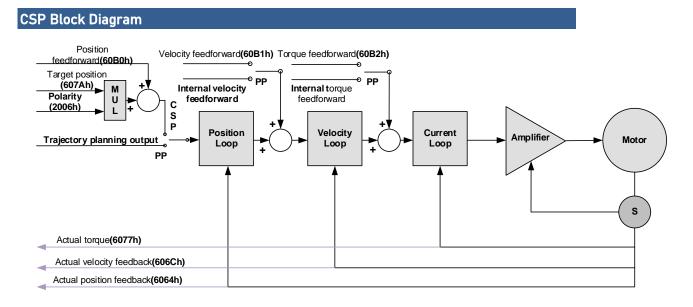
This section describes how to use control words 6040h/ status word 6041h command switching/status determination for EL8-EC controlled motor.

Steps:

- 1: Write 0 to the control word 6040h, and then AND 0x250 by bit, whether it is equal to 0x250
- 2: Write 6 to the control word 6040h, and then AND 0x231 by bit, whether it is equal to 0x231
- 3: Write 7 to the control word 6040h, and then AND 0x233 by bit, whether it is equal to 0x233
- 4: Write 15 to the control word 6040h, and then AND 0x237 by bit, whether it is equal to 0x237

5.5 Position Mode (CSP、PP、HM)

5.5.1 Common Functions of Position Mode


Index	Sub-	Label	A	PDO		Mode		
inaex	Index	Label	Access	PDO	PP	CSP	НМ	
6040	0	Control word	RW	RxPDO	Yes	Yes	Yes	
6072	0	Max torque	RW	RxPDO	Yes	Yes	Yes	
607A	0	Target position	RW	RxPDO	Yes	Yes	/	
607D	1	Min. software limit	RW	RxPDO	Yes	Yes	/	
	2	Max. software limit	RW	RxPDO	Yes	Yes	/	
607F	0	Maximum protocol velocity	RW	RxPDO	Yes	/	Yes	
6080	0	Maximum motor velocity	RW	RxPDO	Yes	Yes	Yes	
6081	0	Profile velocity	RW	RxPDO	Yes	/	/	
6083	0	Profile acceleration	RW	RxPDO	Yes	/	/	
6084	0	Profile deceleration	RW	RxPDO	Yes	/	/	
60C5	0	Protocol maximum acceleration	RW	RxPDO	Yes	/	Yes	
60C6	0	Protocol maximum deceleration	RW	RxPDO	Yes	/	Yes	

Index	Sub-	Label	A	PDO		Mode	
index	Index	Labei	Access	PDO	PP	CSP	НМ
6041	0	Status word	RO	TxPDO	Yes	Yes	Yes
6062	0	Position command	RO	TxPDO	Yes	Yes	Yes
6063	0	Actual internal position	RO	TxPDO	Yes	Yes	Yes
6064	0	Actual position feedback	RO	TxPDO	Yes	Yes	Yes
6065	0	Position deviation window	RW	RxPDO	Yes	Yes	/
6066	0	Position deviation detection time	RW	RxPDO	Yes	Yes	/
606C	0	Velocity feedback	RO	TxPDO	Yes	Yes	Yes

6074	0	Internal	RO	TxPDO	Yes	Yes	Yes
		command					
		torque					
6076	0	Rated torque	RO	TxPDO	Yes	Yes	Yes
6077	0	Actual torque	RO	TxPDO	Yes	Yes	Yes
60F4	0	Actual following error	RO	TxPDO	Yes	Yes	Yes
60FA	0	Position loop velocity output	RO	TxPDO	Yes	Yes	Yes
60FC	0	Internal command position	RO	TxPDO	Yes	Yes	Yes

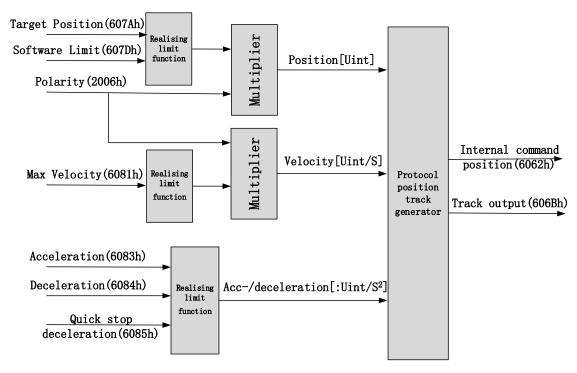
5.5.2 Cyclic Synchronous Position Mode (CSP)

Related Objects

Basic object

PDO	Index+Sub-Index	Label	Data Type	Access	Unit	Notes
	6040-00h	Control word	U16	RW	_	Required
	607A-00h	Target position	I32	RW	Uint	Required
(RXPDO)	60B0-00h	Position feedforward	I32	RW	Uint	Optional
,	60B1-00h	Velocity feedforward	I32	RW	Uint /S	Optional
	60B2-00h	Torque feedforward	I16	RW	0.1%	Optional
	6041-00h	Status word	U16	RO	_	Required
	6064-00h	Actual feedback position	l32	RO	Uint	Required
(TXPDO)	606C-00h	Actual feedback velocity	I32	RO	Uint /S	Optional
	60F4-00h	Actual following error	I32	RO	Uint	Optional
	6077-00h	Actual torque	I16	RO	0.1%	Optional

Extended object


Index+Sub-Index	Label	Data Type	Access	Unit
603F-00h	Error code	U16	RO	_
6060-00h	Operation mode	18	RW	_
6061-00h	Displayed operation mode	18	RO	_
6062-00h	Position demand value	132	RO	Uint
606B-00h	Internal command speed	132	RO	Uint
607D-01h	Min. software limit	132	RO	Uint
607D-02h	Max. software limit	132	RO	Uint
605A-00h	Quick stop option code	I16	RW	_
6085-00h	Emergency stop	U32	RW	Uint /S
6065-0011	deceleration	032	KVV	UIII.73
608F-01h	Encoder resolution	U32	RO	Р
608F-02h	Motor turns	U32	RO	_
6091-01h	Electronic gear ratio	U32	RW	
6091-0111	numerator	032	KVV	
6091-02h	Electronic gear ratio	U32	RW	
0091-0211	denominator	032	IZAA	
6092-01h	Number of pulses per rotation	U32	RW	
6092-02h	Number of physical axis turns	U32	RO	

5.5.3 Protocol Position Mode (PP)

Under non-synchronous mode, master device is responsible for only sending parameters and control command; After receiving enable command from master device, servo driver will plan motion route according to parameters. Under non-synchronous mode, motor motion between each axes are asynchronous.

From the perspective of servo driver functions, the difference between PP and CSP mode is that PP mode requires track generator function from L7EC

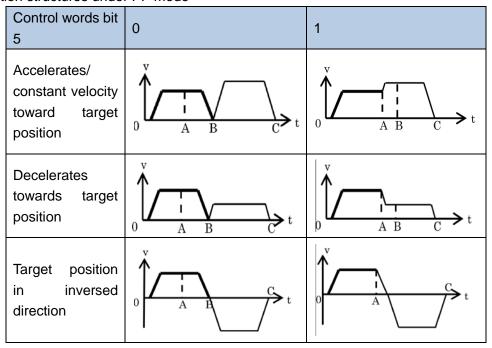
Related Parameters

Basic object

PDO	Index+Sub-Index	Label	Data Type	Access	Unit	Notes
	6040-00h	Control word	U16	RW	_	Required
(RXPDO)	607A-00h	Target position	132	RW	Uint	Required
(KAPDO)	6081-00h	Max. velocity	U32	RW	Uint	Required
	6083-00h	Acceleration	132	RW	Uint /S	Optional
	6041-00h	Status word	U16	RO	_	Required
	603F-00h	Error code	U16	RO		Optional
(TVDDO)	6064-00h	Actual position feedback	132	RO	Uint	Required
(TXPDO)	606C-00h	Actual velocity feedback	132	RO	Uint /S	Optional
	60F4-00h	Actual following error	132	RO	Uint	Optional
	6077-00h	Actual torque	I16	RO	0.1%	Optional

Extended object

Index+Sub-Index	Label	Data Type	Access	Unit
603F-00h	Error code	U16	RO	_
6060-00h	Operation mode	18	RW	_
6061-00h	Displayed operation mode	18	RO	_
6062-00h	Position demand value	132	RO	Uint
606B-00h	Internal command speed	132	RO	Uint
607D-01h	Min. software limit	l32	RO	Uint
607D-02h	Max. software limit	132	RO	Uint


605A-00h	Quick stop option code	I16	RW	_
6085-00h	Emergency stop	U32	RW	Uint /S
0003-0011	deceleration	032	KVV	UIIII/3
608F-01h	Encoder resolution	U32	RO	Р
608F-02h	Motor turns	U32	RO	_
6091-01h	Electronic gear ratio	U32	RW	
0091-0111	numerator	032	KVV	_
6091-02h	Electronic gear ratio	U32	RW	
0091-0211	denominator	032	KVV	_
6092-01h	Number of pulses per rotation	U32	RW	_
6092-02h	Number of physical axis turns	U32	RO	_

Control and status words under PP mode

Control word bits 4~6 definition under PP mode

Bit	Value	Definition
4 (New position)	0—>1	Latest target position(607Ah) Max. Velocity(6081h) Acc-/deceleration(6083h/6084h) Starts
5	0	Trigger new position command once current one is completed.
(Instant trigger)	1	Interrupted current position command and trigger new position command
6(Absolute/	0	Set target position(607Ah)as absolute position
relative)	1	Set target position(607Ah) as relative position

5 motion structures under PP mode

A: Command switching time from master device

B: Arrival time before target position renewal

C: Arrival time after target position renewal

Thick line: Motion before command changed Thin line: Motion after command changed

Status word bits 12-15, 10, 8 definition under PP mode

Bit	Value	Definition	
8(Abnormal 0		Normal motion	
Stoppage)	1	Abnormal stoppage triggered, motor stopped *1)	
10(Arrived at	0	Motion not completed	
position)	1	Target position reached	
	0	Current motion completed/interruptible, able to execute	
42(Now position)	0	new position command *2)	
12(New position)	1	Current motion not completed/interruptible, unable to	
		execute new position command	
	0	Motion parameters valid, necessary parameters all not	
1.1/N/ation		set to 0.	
14(Motion	1	Parameter = 0 under current motion. One of 3	
Parameter = 0)		parameters, Max. velocity (6081h), acceleration (6083h)	
		and deceleration (6084h) = 0.	
	0	Current motion incomplete/uninterruptable, new target	
45/Tii		position cannot be renewed. *3)	
15(Trigger)	1	Current motion completed/interruptible, new target	
		position can be renewed.	

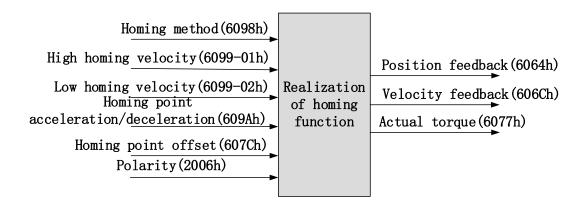
^{*1)} Bit 8 abnormal stoppage usually valid when hardware limit, deceleration stoppage and quick stop are triggered.

Application: Realization of relative position motion

Step 1: 6060h = 1, determine if 6061h = 1. Servo driver is now under PP mode.

Step 2: Write motion parameters: Target position 607Ah, Max. velocity 6081h, acceleration 6083h, deceleration 6084h

Step 3: Enable servo driver and switch bit 6 and 4 to realize relative position motion.


^{*2)} Bit 12 under control word(6040h)bit 5 valid and bit 4 invalid, motion interruptible.

^{*3)} Bit 15 and bit 12 have inversed logic under PP mode.

5.5.4 Homing mode (HM)

EL8-EC servo system supports every other homing method except for method 36. Output/input parameters of L7EC are as shown below.

Related Parameters

Basic object

PDO	Index+Sub-Index	Name	Data Type	Access	Unit	Notes
	6040-00h	Control word	U16	RW	_	Required
	6098-00h	Homing mode	18	RW	Uint	Optional
	6099-01h	High homing velocity	U32	RW	Uint/S	Optional
(RXPDO)	6099-02h	Low homing velocity	U32	RW	Uint /S	Optional
	609A-00h	Homing point acceleration	U32	RW	Uint /S ²	Optional
	607C-00h	Homing point offset	132	RW	Uint	Optional
	60-00h	Status word	U16	RO	_	Required
	603F-00h	Error code	U16	RO		Optional
(TVDDO)	6064-00h	Actual position feedback	132	RO	Uint	Optional
(TXPDO)	606C-00h	Actual velocity feedback	132	RO	Uint /S	Optional
	60F4-00h	Actual following error	132	RO	Uint	Optional
	6077-00h	Actual torque	I16	RO	0.1%	Optional

Extended object

Index+Sub-Index	Label	Data Type	Access	Unit
603F-00h	Error code	U16	RO	_
6060-00h	Operation mode	18	RW	_
6061-00h	Displayed operation mode	18	RO	_
6062-00h	Position demand value	132	RO	Uint
606B-00h	Internal command speed	132	RO	Uint
608F-01h	Encoder resolution	l32	RO	Uint
608F-02h	Motor revolution	132	RO	Uint

6091-01h	Electronic gear ratio	U32	RW	
0091-0111	numerator	032	IXVV	
6091-02h	Electronic gear ratio	U32	RW	
0091-0211	denominator	032	KVV	_
6092-01h	Number of pulses per rotation	U32	RW	_
6092-02h	Number of physical axis turns	U32	RO	_

Control and status words under HM mode

Control word bit 4 definition under HM mode

Bit	Value	Definition
4(Homing motion	0->1	Homing motion starts
starts/stops)	1 —>0	Homing motion stops, motor stops

Status word bits 12-15, 10, 8 definition under PP mode

Bit	Value	Definition	
8(Abnormal 0		Normal motion	
Stoppage)	1	Abnormal stoppage triggered, motor stops *1)	
10(Arrived at	0	Motion not completed	
position)	1	Target position reached	
12(Homing done)	0	Homing not done	
12(Horning done)	1	Homing done, valid after reaching position(bit 10) *2)	
	0	Motion parameters valid, necessary parameters all not	
		set to 0.	
14(Motion	1	Parameter = 0 under current motion. One of 4	
Parameter = 0)		parameters, Homing mode (6098h), high homing	
		velocity(6099h-01), low homing velocity (6099h-02) and	
		homing point acc-/deceleration (609Ah) = 0.	
15(Triggor)	0	Homing triggered/completed *3)	
15(Trigger)	1	Homing triggers	

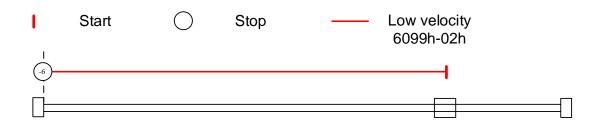
^{*1)} Bit 8 abnormal stoppage usually valid when hardware limit, deceleration stoppage and quick stop are triggered.

Incorrect position triggering conditions

Triggering condition	Remarks	
Absolute encoder homing	Control words 6040h bit 4 from 0 to 1	
2 limit switch signals detected	Positive and negative limit switches detected during homing	

^{*2)} Determine if homing is done, determine if bit 10/12 is occupied.

^{*3)} Use to indicate if homing is able to trigger or already triggered.

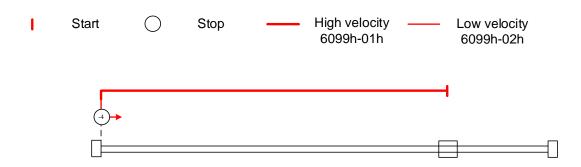


	333:
Negative limit valid when positive limit in	Negative limit valid under 2,7-10,23-26 homing
used	modes
Positive limit valid when negative limit in	Positive limit valid under 1,11-14,27-30 homing
used	modes
Limit switch valid when not in used	Limit switch valid under 3,4,19,20 homing
Limit Switch valid when not in used	modes
Limit switch/homing signal valid when only	Limit switch and homing sensor valid under
z-signal in used	33,34 homing modes

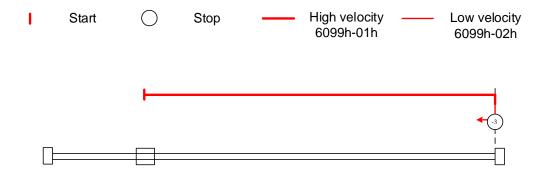
Homing mode

Torque limiting mode

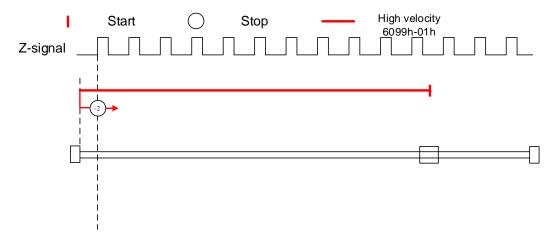
Mode-6: Search for homing point in **negative direction** at **low velocity**. Stop after torque reaches the value set in Pr5.39 and homing done signal delivers after the time value set in Pr5.37



Mode -5: Search for homing point in **positive direction** at **low velocity**. Stop after torque reaches the value set in Pr5.39 and homing done signal delivers after the time value set in Pr5.37

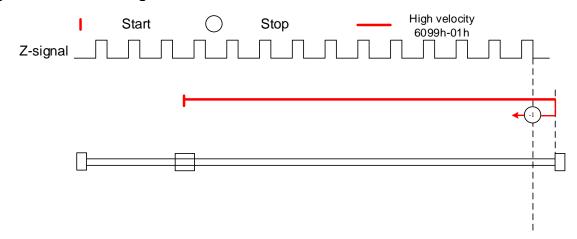


Mode -4: Search for homing point in **negative direction** at **high velocity**. Move in **positive direction** after torque reaches the value set in Pr5.39, stops when torque is gone. Homing done signal delivers after the time value set in Pr5.37



Mode -3: Search for homing point in **positive direction** at **high velocity**. Move in **negative direction** after torque reaches the value set in Pr5.39, stops when torque is gone. Homing done signal delivers after the time value set in Pr5.37

Torque limiting+Z-signal mode


Mode -2: Search for homing point in **negative direction** at **high velocity**. Move in **positive direction** after torque reaches the value set in Pr5.39, stops when torque is gone with the **first Z-signal**.

Mode -1: Search for homing point in **positive direction** at **high velocity**. Move in **negative direction** after torque reaches the value set in Pr5.39, stops when torque is

gone with the first Z-signal.

Limit switch signal+Z-signal mode

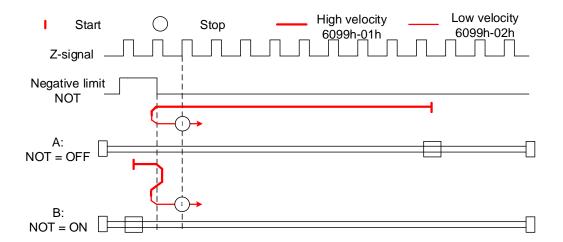

Mode 1:

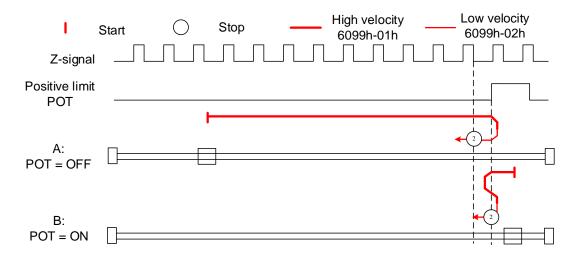
Diagram A: Negative limit switch = OFF

- 1. Move in negative direction at high velocity until negative limit switch valid.
- 2. Move in **positive direction** at **low velocity** and stops **after negative limit switch** and **first encoder Z-signal valid**

Diagram B: Negative limit switch = ON

- 1. Start to move at **negative limit switch position** in **positive direction** at **high velocity** until **negative limit switch invalid.**
- 2. Move in negative direction at high velocity until negative limit switch valid.
- 3. Move in **positive direction** at **low velocity** and stops **after negative limit switch** and **first encoder Z-signal valid**

Mode 2:


Diagram A: Positive limit switch = OFF

- 1. Move in positive direction at high velocity until positive limit switch valid.
- 2. Move in **negative direction** at **low velocity** and stops **after positive limit switch** and **first encoder Z-signal valid**

Diagram B: Positive limit switch = ON

- 1. Start to move at **positive limit switch position** in **negative direction** at **high velocity** until **positive limit switch invalid.**
- 2. Move in positive direction at high velocity until positive limit switch valid.
- 3. Move in **negative direction** at **low velocity** and stops **after positive limit switch** and **first encoder Z-signal valid**

If the negative limit signal is valid during the homing process, the status word (6041h) bit 13 will be valid, indicating homing error and the motor will stop immediately.

Homing switch signal+Z-signal mode

Mode 3:

Diagram A: *Homing switch* = *OFF*

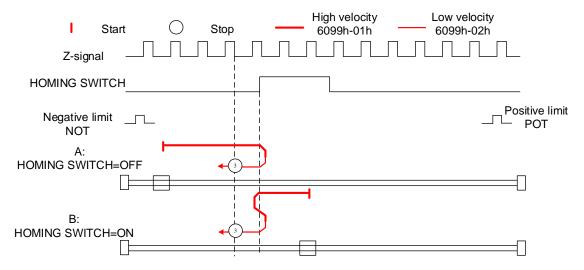

- 1. Move in positive direction at high velocity until homing switch valid.
- 2. Move in **negative direction** at **low velocity** and stops **after homing switch** and **first encoder Z-signal valid**

Diagram B: *Homing switch* = *ON*

- 1. Start to move at **homing switch position** in **negative direction** at **high velocity** until **after homing switch.**
- 2. Move in positive direction at high velocity until homing switch valid.
- 3. Move in **negative direction** at **low velocity** and stops **after homing switch** and **first encoder Z-signal valid**

If the positive/negative limit switch signal is valid during the homing process, the status word (6041h) bit 13 will be valid, indicating homing error and the motor will stop immediately.

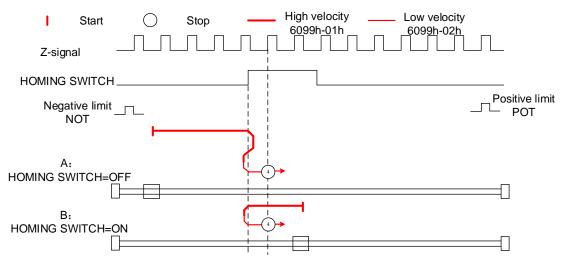

Mode 4:

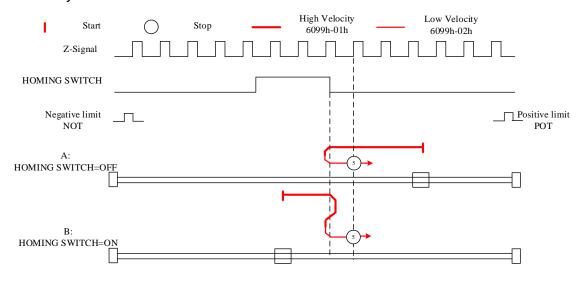
Diagram A: Homing switch = OFF

- 1. Move in positive direction at high velocity until homing switch valid.
- 2. Move in negative direction at high velocity until homing switch invalid.
- 3. Move in **positive direction** at **low velocity** and stops after **homing switch valid** and **first encoder Z-signal valid**

Diagram B: Homing switch = ON

- 1. Start to move at **homing switch position** in **negative direction** at **high velocity** until **after homing switch.**
- 2. Move in **positive direction** at **low velocity** and stops after **homing switch valid** and **first encoder Z-signal valid**

Mode 5:


Diagram A: Homing switch = OFF

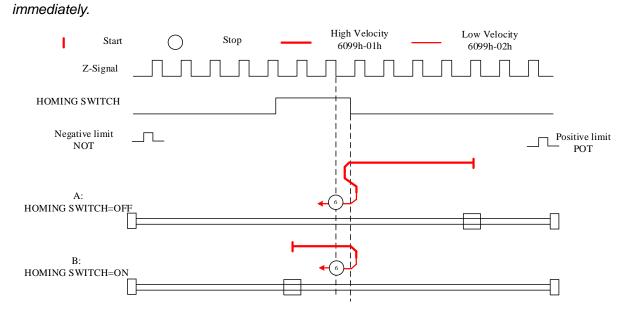
- 1. Move in negative direction at high velocity until homing switch valid.
- 2. Move in **positive direction** at **low velocity** and stops **after homing switch** and **first encoder Z-signal valid**

Diagram B: Homing switch = ON

- 1. Start to move at **homing switch position** in **positive direction** at **high velocity** until **after homing switch.**
- 2. Move in negative direction at high velocity until homing switch valid.
- 3. Move in **positive direction** at **low velocity** and stops **after homing switch** and **first encoder Z-signal valid**

If the positive/negative limit switch signal is valid during the homing process, the status word (6041h) bit 13 will be valid, indicating homing error and the motor will stop immediately.

Mode 6:


Diagram A: Homing switch = OFF

- 1. Move in negative direction at high velocity until homing switch valid.
- 2. Move in positive direction at high velocity until homing switch invalid.
- 3. Move in **negative direction** at **low velocity** and stops after **homing switch valid** and **first encoder Z-signal valid**

Diagram B: *Homing switch* = *ON*

- 1. Start to move at **homing switch position** in **positive direction** at **high velocity** until **after homing switch.**
- 2. Move in **negative direction** at **low velocity** and stops after **homing switch valid** and **first encoder Z-signal valid**

Limit switch signal+homing switch signal+Z-signal mode

Mode 7

Diagram A: Homing switch & positive limit switch = OFF

- 1. Move in positive direction at high velocity until homing switch valid.
- 2. Move in **negative direction** at **low velocity** and stops after **homing switch** and **first encoder Z-signal valid.**

Diagram B: Homing switch = ON, positive limit switch = OFF

- 1. Start to move at **homing switch position** in **negative direction** at **high velocity** until **after homing switch.**
- 2. Move in positive direction at high velocity until homing switch valid.
- 3. Move in **negative direction** at **low velocity** and stops **after homing switch** and **first encoder Z-signal valid**

Diagram C: Homing switch & positive limit switch = OFF

- 1. Move in **positive direction** at **high velocity** until **positive limit switch valid**.
- 2. Move in negative direction at high velocity until after homing switch.
- 3. Move in positive direction at high velocity until homing switch valid.
- 4. Move in **negative direction** at **low velocity** and stops **after homing switch** and **first encoder Z signal valid**

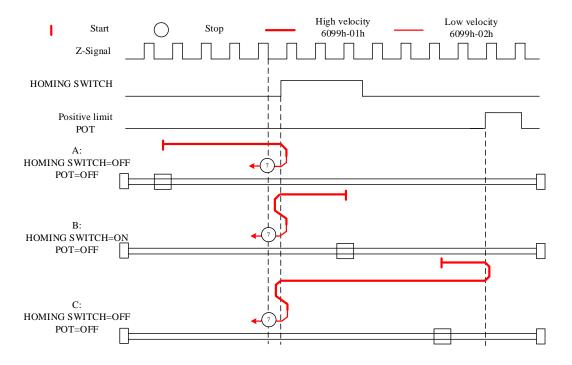


Diagram A: Homing switch & positive limit switch = OFF

- 1. Move in positive direction at high velocity until homing switch valid.
- 2. Move in negative direction at high velocity until after homing switch.
- 3. Move in **positive direction** at **low velocity** and stops after **homing switch valid** and **first encoder Z-signal valid**.

Diagram B: Homing switch = ON, positive limit switch = OFF

- 1. Start to move at **homing switch position** in **negative direction** at **high velocity** until **after homing switch.**
- 2. Move in **positive direction** at **low velocity** and stops after **homing switch valid** and **first encoder Z-signal valid**

Diagram C: Homing switch & positive limit switch = OFF

- 1. Move in **positive direction** at **high velocity** until **positive limit switch valid**.
- 2. Move in negative direction at high velocity until after homing switch.
- 3. Move in **positive direction** at **low velocity** and stops after **homing switch valid** and **first encoder Z-signal valid**.



Diagram A: Homing switch & positive limit switch = OFF

- 1. Move in positive direction at high velocity until after homing switch.
- 2. Move in **negative direction** at **low velocity** and stops after **homing switch valid** and **first encoder Z-signal valid**.

Diagram B: Homing switch = ON, positive limit switch = OFF

- 1. Start to move at **homing switch position** in **positive direction** at **high velocity** until **homing switch invalid.**
- 2. Move in **negative direction** at **low velocity** and stops after **homing switch valid** and **first encoder Z-signal valid**

Diagram C: Homing switch & positive limit switch = OFF

- 1. Move in positive direction at high velocity until positive limit switch valid.
- 2. Move in negative direction at high velocity until homing switch valid.
- 3. Move in positive direction at high velocity until after homing switch.
- 4. Move in **negative direction** at **low velocity** and stops after **homing switch valid** and **first encoder Z signal valid**

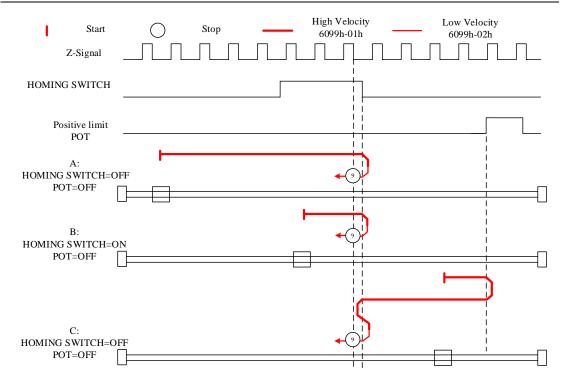


Diagram A: Homing switch & positive limit switch = OFF

- 1. Move in positive direction at high velocity until after homing switch.
- 2. Move in negative direction at high velocity until homing switch valid.
- 3. Move in **positive direction** at **low velocity** and stops **after homing switch** and **first encoder Z-signal valid.**

Diagram B: Homing switch = ON, positive limit switch = OFF

- 1. Start to move at **homing switch position** in **positive direction** at **high velocity** until **after homing switch.**
- 2. Move in negative direction at high velocity until homing switch valid.
- 3. Move in **positive direction** at **low velocity** and stops **after homing switch** and **first encoder Z-signal valid**

Diagram C: Homing switch & positive limit switch = OFF

- 1. Move in **positive direction** at **high velocity** until positive **limit switch valid**.
- 2. Move in negative direction at high velocity until homing switch valid.
- 3. Move in **positive direction** at **low velocity** and stops **after homing switch** and **first encoder Z signal valid**

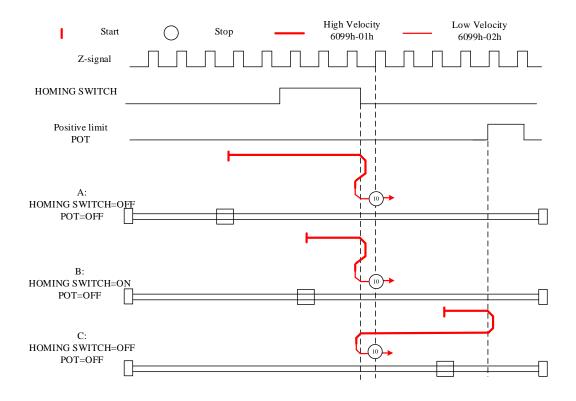


Diagram A: Homing switch & negative limit switch = OFF

- 1. Move in negative direction at high velocity until homing switch valid.
- 2. Move in **positive direction** at **low velocity** and stops **after homing switch** and **first encoder Z-signal valid**

Diagram B: Homing switch = ON, negative limit switch = OFF

- 1. Start to move at **homing switch position** in **positive direction** at **high velocity** until **after homing switch.**
- 2. Move in negative direction at high velocity until homing switch valid.
- 3. Move in **positive direction** at **low velocity** and stops **after homing switch** and **first encoder Z-signal valid**

Diagram C: Homing switch & negative limit switch = OFF

- 1. Move in negative direction at high velocity until the negative limit switch valid.
- 2. Move in positive direction at high velocity until homing switch invalid.
- 3. Move in **negative direction** at **high velocity** until **homing switch valid**.
- 4. Move in **positive direction** at **low velocity** and stops **after homing switch** and **first encoder Z signal valid**

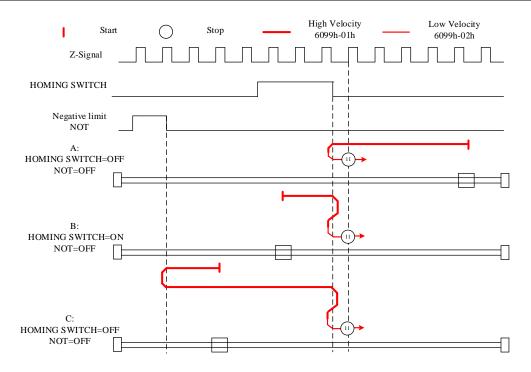


Diagram A: Homing switch & negative limit switch = OFF

- 1. Move in negative direction at high velocity until homing switch valid.
- 2. Move in positive direction at high velocity until after homing switch.
- 3. Move in **negative direction** at **low velocity** and stops after **homing switch valid** and **first encoder Z-signal valid**

Diagram B: Homing switch = ON, negative limit switch = OFF

- 1. Move at homing switch position in negative direction at high velocity until after homing switch.
- 2. Move in **positive direction** at **low velocity** and stops after **homing switch valid** and **first encoder Z-signal valid**.

Diagram C: Homing switch & negative limit switch = OFF

- 1. Move in negative direction at high velocity until negative limit switch valid.
- 2. Move in positive direction at high velocity until after homing switch.
- 3. Move in **negative direction** at **low velocity** and stops after **homing switch valid** and **first encoder Z-signal valid**.

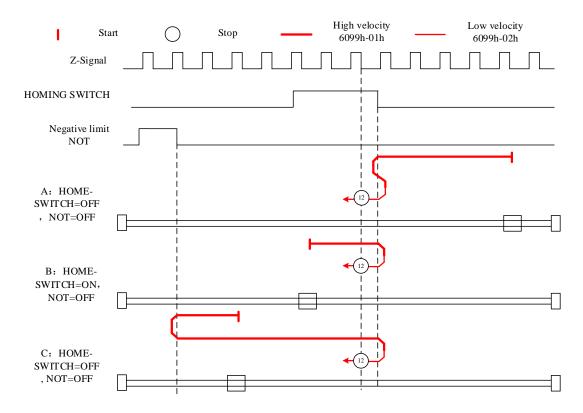


Diagram A: Homing switch & negative limit switch = OFF

- 1. Move in negative direction at high velocity until after homing switch.
- 2. Move in **positive direction** at **low velocity** and stops after **homing switch valid** and **first encoder Z-signal valid**.

Diagram B: Homing switch = ON, negative limit switch = OFF

- 1. Start to move at **homing switch position** in **negative direction** at **high velocity** until **after homing switch.**
- 2. Move in positive **direction** at **low velocity** and stops after **homing switch valid** and **first encoder Z-signal valid**.

Diagram C: Homing switch & negative limit switch = OFF

- 1. Move in negative direction at high velocity until negative limit switch valid.
- 2. Move in positive direction at high velocity until homing switch valid.
- 3. Move in **negative direction** at **high velocity** until **after homing switch**.
- 4. Move in **positive direction** at **low velocity** and stops after **homing switch valid** and **first encoder Z-signal valid**.

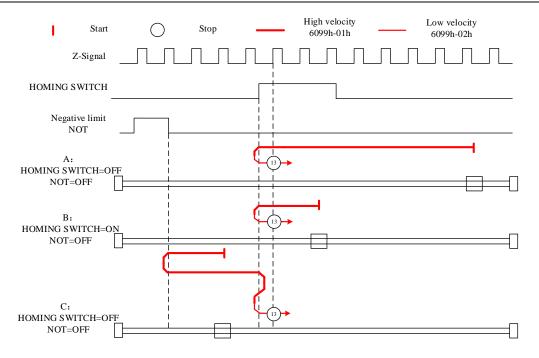
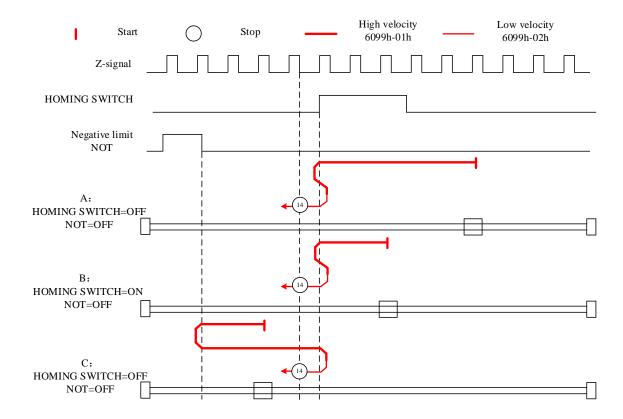


Diagram A: Homing switch & negative limit switch = OFF

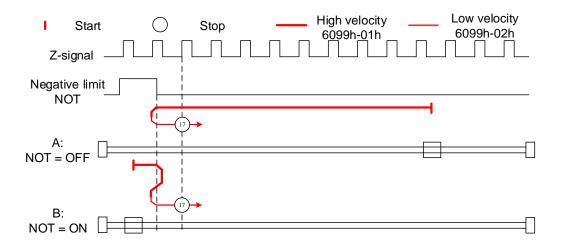
- 1. Move in **negative direction** at **high velocity** until **after homing switch**.
- 2. Move in positive direction at high velocity until homing switch valid.
- 3. Move in **negative direction** at **low velocity** and stops **after homing switch** and **first encoder Z-signal valid.**


Diagram B: Homing switch = ON, negative limit switch = OFF

- 1. Start to move at **homing switch position** in **negative direction** at **high velocity** until **homing switch invalid**.
- 2. Move in positive direction until homing switch valid.
- 3. Move in **negative direction** at **low velocity** and stops **after homing switch** and **first encoder Z signal valid.**

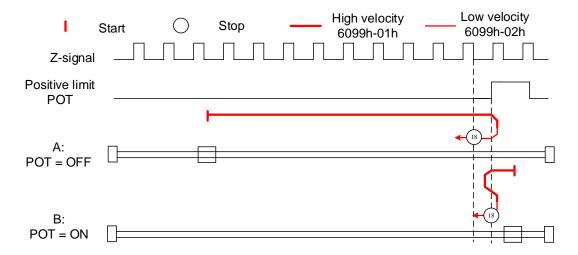
Diagram C: Homing switch & negative limit switch = OFF

- 1. Move in negative direction at high velocity until negative limit switch valid.
- 2. Move in positive direction at high velocity until homing switch valid.
- 3. Move in **negative direction** at **low velocity** and stops **after homing switch** and **first encoder Z-signal valid.**

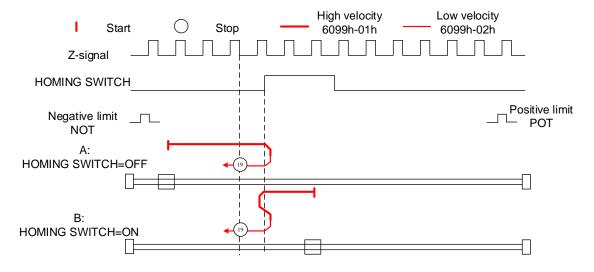


Limit switch signal triggering detection mode

Mode 17:

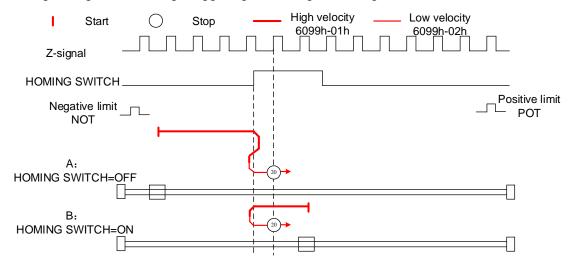

This mode is similar to mode 1. Only difference is that homing point detection is not through Z-signal but through triggering of negative limit switch signal

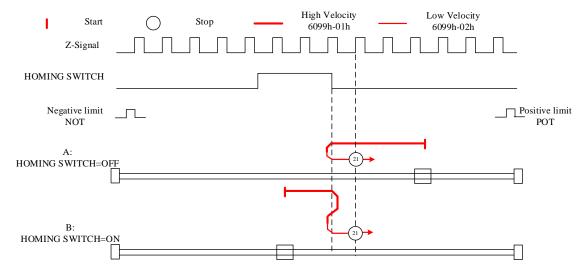
Mode 18:


This mode is similar to mode 2. Only difference is that homing point detection is not through Z-signal but through switching of positive limit switch signal

Homing switch signal triggering detection mode

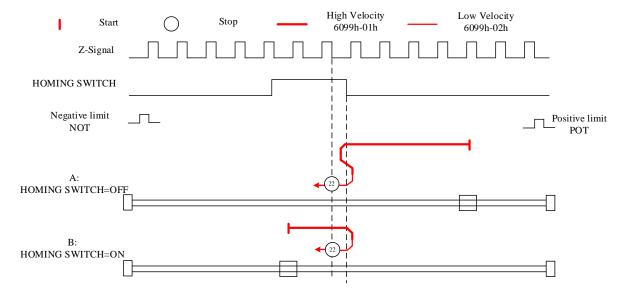
Mode 19:

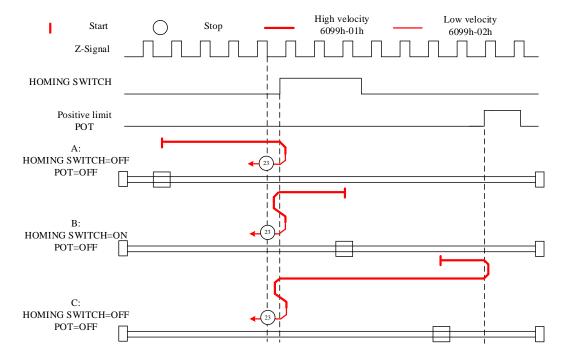

This mode is similar to mode 3. Only difference is that homing point detection is not through Z-signal but through triggering of homing switch signal


Mode 20:

This mode is similar to mode 4. Only difference is that homing point detection is not through Z-signal but through triggering of homing switch signal

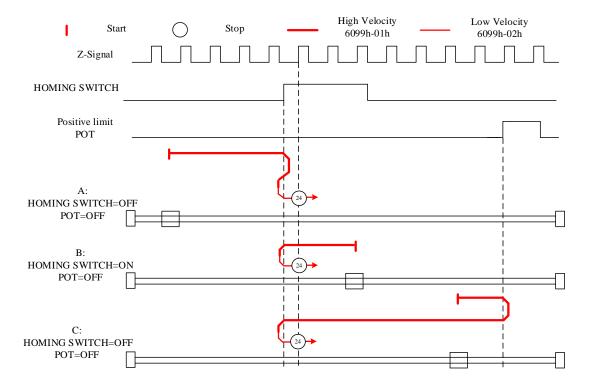
Mode 21:

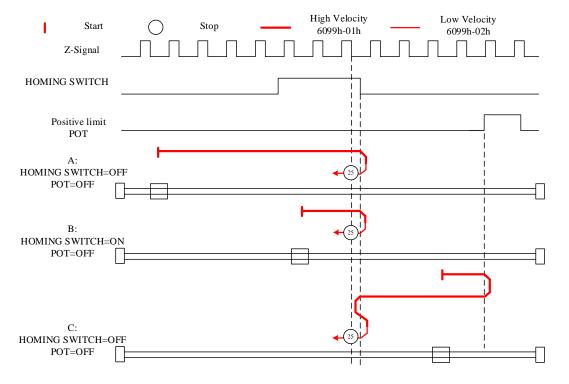

This mode is similar to mode 5. Only difference is that homing point detection is not through Z-signal but through triggering of homing switch signal.


Mode 22:

This mode is similar to mode 6. Only difference is that homing point detection is not through Z-signal but through triggering of homing switch signal.

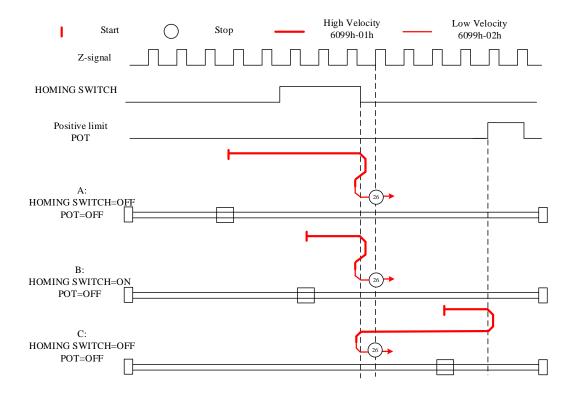
Mode 23:

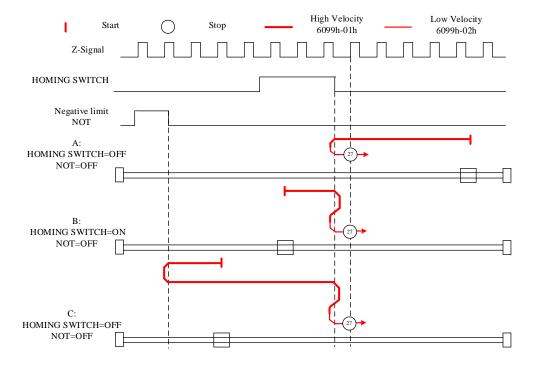

This mode is similar to mode 7. Only difference is that homing point detection is not through Z-signal but through triggering of homing switch signal.


Mode 24:

This mode is similar to mode 8. Only difference is that homing point detection is not through Z-signal but through triggering of homing switch signal.

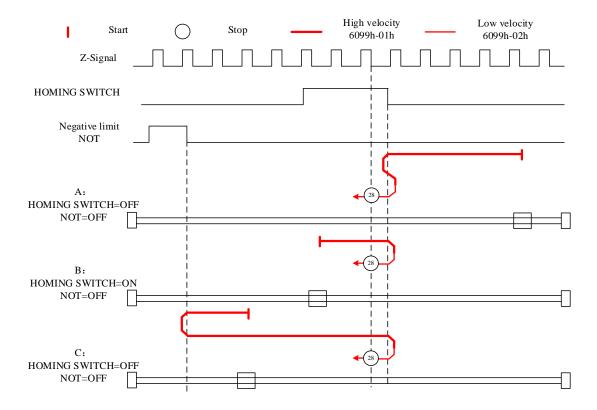
Mode 25:

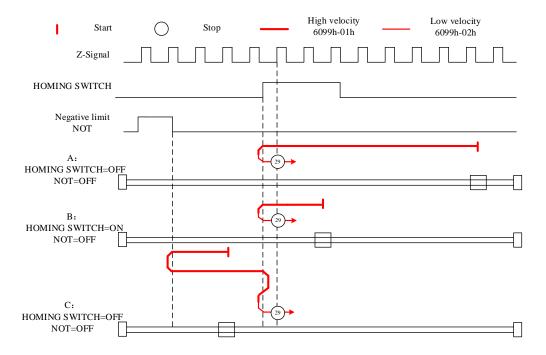

This mode is similar to mode 9. Only difference is that homing point detection is not through Z-signal but through triggering of homing switch signal


Mode 26:

This mode is similar to mode 10. Only difference is that homing point detection is not through Z-signal but through triggering of homing switch signal

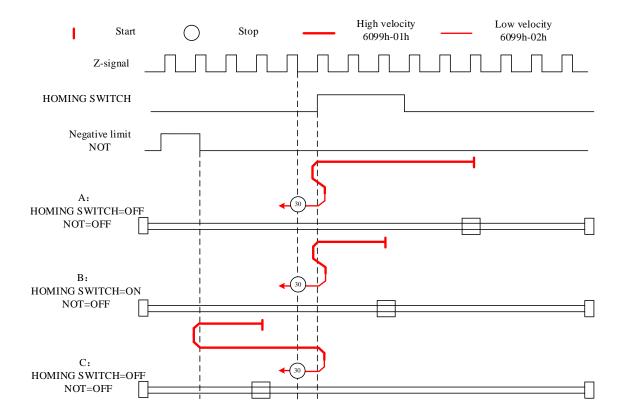
Mode 27:


This mode is similar to mode 11. Only difference is that homing point detection is not through Z-signal but through triggering of homing switch signal

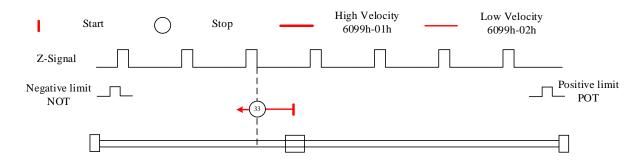

Mode 28:

This mode is similar to mode 12. Only difference is that homing point detection is not through Z-signal but through triggering of homing switch signal

Mode 29:

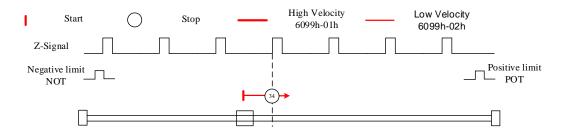

This mode is similar to mode 13. Only difference is that homing point detection is not through Z-signal but through triggering of homing switch signal

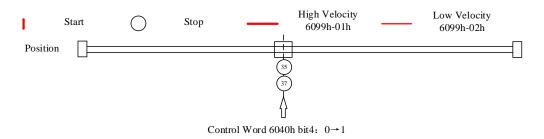
Mode 30:


This mode is similar to mode 14. Only difference is that homing point detection is not through Z-signal but through triggering of homing switch signal

Other modes

Mode 33:


The motor starts to move in **negative direction** and stops when the **Z-signal is valid**. If the positive/negative limit switch signal or homing switch is valid during the homing process, the status word (6041h) bit 13 will be valid, indicating homing error and the motor will stop immediately.


Mode 34:

The motor starts to move in **positive direction** and stops when the **Z-signal is valid**. If the positive/negative limit switch signal or homing switch is valid during the homing process, the status word (6041h) bit 13 will be valid, indicating homing error and the motor will stop immediately.

Mode 35/37:

Set the current position as homing point. Using this mode, motor doesn't have to be enabled. Set control word 6040h bit 4 from 0 to 1.

Application: Realization of homing motion

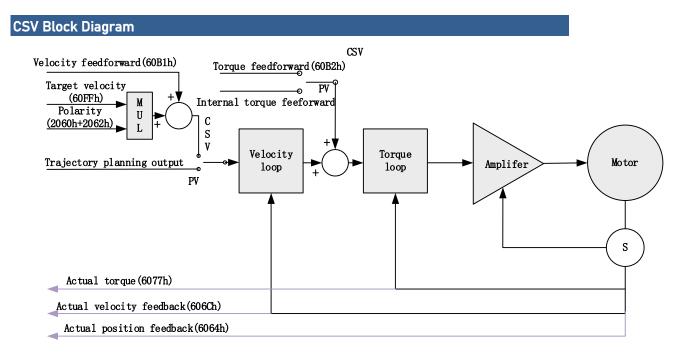
Step 1: 6060h = 6, determine if 6061h = 6. Servo driver is now under HM mode.

Step 2: Write motion parameters: Homing method 6098h, Homing velocity

6099h-01/6099h-02 and acceleration/deceleration 609Ah.

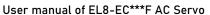
Step 3: Enable servo driver and switch bit 4 from 0 to 1 to start homing motion.

5.6 Velocity Control Mode (CSV, PV)


5.6.1 Common Functions of Velocity Control

Indov	Sub	Nome	A	DDO	Mode	
Index	Index	Name	Access	PDO	CSV	PV
6040	0	Control word	RW	RxPDO	Yes	Yes
6072	0	Max torque	RW	RxPDO	Yes	Yes
6080	0	Maximum motor velocity	RW	RxPDO	Yes	Yes
60B1	0	Velocity feedforward (Restricted by 6080)	RW	RxPDO	Yes	Yes
60B2	0	Torque feedforward	RW	RxPDO	Yes	Yes
60FF	0	Target velocity (Restricted by 6080)	RW	RxPDO	Yes	Yes

Sub	Name		PD-0	Mode		
Index	Index	Name	Access	PDO	csv	PV
6041	0	Status word	RO	TxPDO	Yes	Yes
6063	0	Actual internal position	RO	TxPDO	Yes	Yes
6064	0	Actual feedback position	RO	TxPDO	Yes	Yes
606B	0	Internal command velocity	RO	TxPDO	Yes	Yes
606C	0	Actual feedback velocity	RO	TxPDO	Yes	Yes
6074	0	Internal torque command	RO	TxPDO	Yes	Yes
6076	0	Rated torque	RO	TxPDO	Yes	Yes
6077	0	Actual torque	RO	TxPDO	Yes	Yes


5.6.2 Cyclic Synchronous Velocity Mode (CSV)

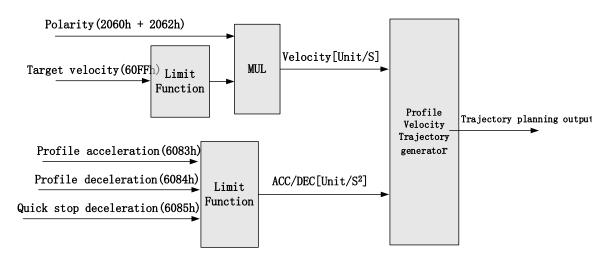
Related Objects

Basic object

PDO	Index+Sub-Index	Name	Data Type	Access	Unit	Remarks
	6040-00h	Control word	U16	RW	_	Required
(DVDDO)	60FF-00h	Target velocity	132	RW	Uint	Required
(RXPDO)	60B1-00h	Velocity feedforward	132	RW	Uint /S	Optional
	60B2-00h	Torque feedforward	I16	RW	0.1%	Optional
(TXPDO)	6041-00h	Status word	U16	RO	_	Required
	6064-00h	Actual position feedback	132	RO	Uint	Optional

 606C-00h	Actual speed feedback	132	RO	Uint /S	Optional
60F4-00h	Actual following error	132	RO	Uint	Optional
6077-00h	Actual torque	I16	RO	0.1%	Optional

Extended object


Index+Sub-Index	Name	Data Type	Access	Unit
603F-00h	Error code	U16	RO	_
6060-00h	Operation mode	18	RW	_
6061-00h	Displayed operation mode	18	RO	_
606B-00h	Internal command velocity	l32	RO	Uint
605A-00h	Quick stop option	l16	RW	_
6085-00h	Quick stop deceleration	U32	RW	Uint /S

5.6.3 Profile Velocity Mode (PV)

In asynchronous motion mode, master device is only responsible for sending motion parameters and control commands.EL8-EC servo drive will conduct trajectory planning according to the motion parameters sent by master device after receiving the motion start command from the master device. In asynchronous motion mode, the motion between each axes is asynchronous.

PV Block Diagram

The difference between PV and CSV mode is that PV needs EL8-EC to have the function of trajectory generator. The input and output structure of the trajectory generator is shown in figure 5.8

Related Objects

Basic object

PDO	Index+Sub-Index	Name	Data Type	Access	Unit	Notes
	6040-00h	Control word	U16	RW	_	Required
(RXPDO)	60FF-00h	Target velocity	132	RW	Uint	Required
	6083-00h	Acceleration	132	RW	Uint /S	Optional
	6041-00h	Status word	U16	RO	_	Required
	6064-00h	Position feedback	132	RO	Uint	Optional
(TVDDO)	606C-00h	Velocity feedback	132	RO	Uint /S	Optional
(TXPDO)	60F4-00h	Actual following error	132	RO	Uint	Optional
	6077-00h	Actual torque	l16	RO	0.1%	Optional

Extended object

Index+Sub-Index	Name	Data Type	Access	Unit
603F-00h	Error code	U16	RO	
6060-00h	Operation mode	18	RW	
6061-00h	Displayed operation mode	18	RO	
605A-00h	Quick stop option	I16	RW	
6084-00h	Deceleration	U32	RW	Uint /S
6085-00h	Quick stop deceleration	U32	RW	Uint /S

Control Word and Status Word for Profile Velocity Mode

The bit6~4 of control words (6040h) associated with the control mode in PV mode are invalid. The motion in PV mode can be triggered as long as the motion parameters (target velocity (60FFh) ACC/DEC (6083h/6084h)) are given after the axis is enabled.

Table7. Bit15~12、10、8 of Status word (6041h) for Profile Velocity Mode

Bit (Label)	Value	Details
8	0	Quick stop invalid
(Quick stop)	1	Quick stop valid
10	0	Velocity not yet reached
(Velocity reached)	1	Velocity reached
12	0	It's not zero speed. It's moving.
(Zero speed)	1	Zero speed or it's going to slow down to zero speed *1)

^{*1)} Zero speed of bit 12 is generally effective when deceleration stop and hardware limit valid.

Application: Realization of profile velocity motion

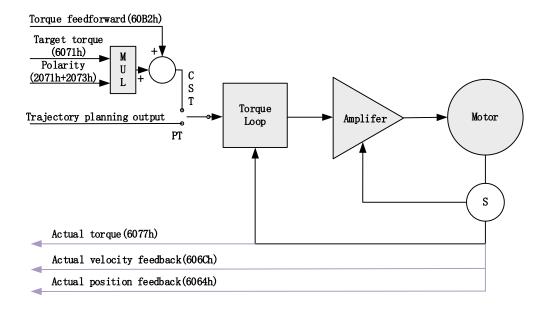
Step 1: 6060h = 3, determine if 6061h = 3. Servo driver is now under PV mode.

Step 2: Write motion parameters: Target velocity 60FFh, acceleration 6083h and

deceleration 6084h.

5.7 Torque Mode (CST、PT)

5.7.1 Common Functions of Torque Mode


Index	Sub	Label	Access	PDO	М	ode
index	Index	Label	Access	PDO	CST	PT
6040	0	Control word	RW	RxPDO	Yes	Yes
6071	0	Target torque	RW	RxPDO	Yes	Yes
6072	0	Max torque	RW	RxPDO	Yes	Yes
6080	0	Maximum motor speed	RW	RxPDO	Yes	Yes
6087	0	Torque change rate	RW	RxPDO	Yes	Yes
60B2	0	Torque feedforward	RW	RxPDO	Yes	Yes

Index	Sub	Label	Access	PDO	Мо	ode
index	Index	Labei	Access	PDO	CST	PT
6041	0	Status word	RO	TxPDO	Yes	Yes
6063	0	Actual internal position	RO	TxPDO	Yes	Yes
6064	0	Actual feedback position	RO	TxPDO	Yes	Yes
606C	0	Actual feedback velocity	RO	TxPDO	Yes	Yes
6074	0	Internal torque command	RO	TxPDO	Yes	Yes
6075	0	Rated current	RO	No	Yes	Yes
6076	0	Rated torque	RO	No	Yes	Yes
6077	0	Actual torque	RO	TxPDO	Yes	Yes
6079	0	Bus voltage	RO	TxPDO	Yes	Yes

5.7.2 Cyclic Synchronous Torque Mode (CST)

CST Block Diagram

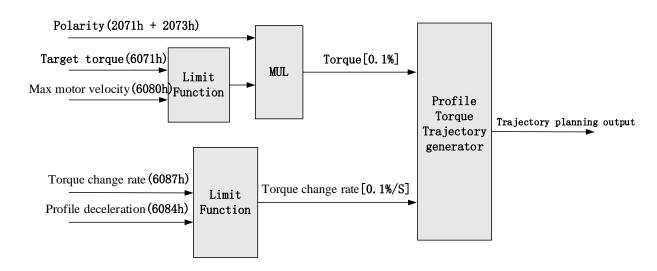
Related Objects

Basic object

PDO	Index+Sub-Index	Name	Data Type	Access	Unit	Remarks
	6040-00h	Control word	U16	RW	_	Required
(RXPDO)	6071-00h	Target torque	I16	RW	Uint	Required
	6087-00h	Torque feed-forward	U32	RW	0.1%/S	Optional
	6041-00h	Status word	U16	RO	_	Required
	6064-00h	Actual position feedback	132	RO	Uint	Optional
(TXPDO)	606C-00h	Actual velocity feedback	132	RO	Uint /S	Optional
	60F4-00h	Actual following error	132	RO	Uint	Optional
	6077-00h	Actual torque	I16	RO	0.1%	Required

Extended object

Index+Sub-Index	Name	Data Type	Access	Unit
603F-00h	Error code	U16	RO	_
6060-00h	Operation mode	18	RW	_
6061-00h	Displayed operation mode	18	RO	_
6074-00h	Internal command torque	l16	RO	0.1%
605A-00h	Quick stop option	I16	RW	_
6080-00h	Maximum motor velocity	U32	RW	Uint /S



6085-00h	Quick stop deceleration	U32	RW	Uint /S
60B1-00h	Velocity feedforward	132	RW	Uint /S
2077-00h	Velocity limit	I16	RW	RPM

5.7.3 Profile Torque Mode (PT)

In asynchronous motion mode, master device is only responsible for sending motion parameters and control commands.EL7-EC servo drive will conduct trajectory planning according to the motion parameters sent by master device after receiving the motion start command from the master device. In asynchronous motion mode, the motion between each axes is asynchronous.

PT Block Diagram

Related Objects

Basic object

PDO	Index+Sub-Index	Label	Data Type	Access	Unit	Notes
	6040-00h	Control word	U16	RW	_	Required
(RXPDO)	6071-00h	Target torque	l16	RW	0.1%	Required
	6087-00h	Torque change rate	U32	RW	0.1%/S	Optional
	6041-00h	Status word	U16	RO	_	Required
	6064-00h	Actual feedback position value	132	RO	Uint	Optional
(TXPDO)	606C-00h	Actual feedback speed value	132	RO	Uint /S	Optional
	60F4-00h	Actual following error	132	RO	Uint	Optional
	6077-00h	Actual torque	l16	RO	0.1%	Optional

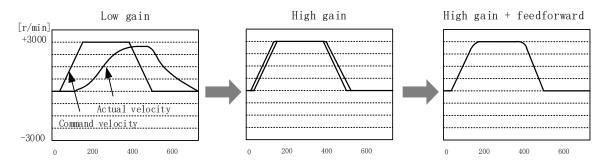
Extended object

Index+Sub-Index	Label	Data Type	Access	Unit
603F-00h	Error code	U16	RO	_
6060-00h	Operation mode	18	RW	_
6061-00h	Displayed operation mode	18	RO	_
6074-00h	Internal command torque	I16	RO	0.1%
6080-00h	Maximum motor velocity	U32	RW	Uint /S
605A-00h	Quick stop option	l16	RW	_
6085-00h	Quick stop deceleration	U32	RW	Uint /S
2077-00h	Velocity limit	l16	RW	RPM

Application: Realization of profile torque motion

Step 1: 6060h = 4, determine if 6061h = 4. Servo driver is now under PT mode.

Step 2: Write motion parameters: Target torque 6071h, Torque change rate 6087h, and


Max. velocity limit 6080h

Chapter 6 Application

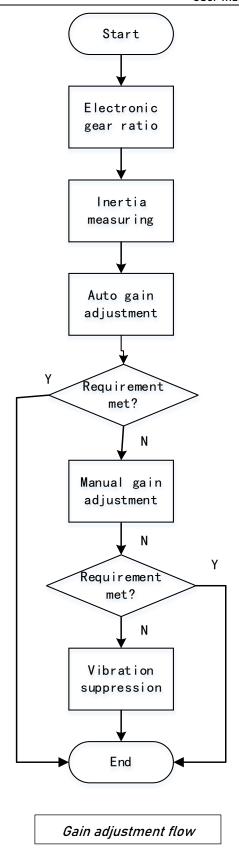
6.1 Gain Adjustment

In order for servo driver to execute commands from master device without delay and to optimize machine performance, gain adjustment has to be done yet.

Velocity loop integral time

constant: 31ms

Velocity loop integral time


constant: 31ms

Position loop gain: 320 (0.1/s) Position loop gain: 900 (0.1/s) Position loop gain: 900 (0.1/s) Velocity loop gain: 180 (0.1Hz) Velocity loop gain: 500 (0.1Hz) Velocity loop gain: 500 (0.1Hz) Velocity loop integral time

constant: 31ms

Servo driver gain adjustment is done in combination with a few other parameters (Inertia ratio, Position loop gain, Velocity loop gain and Filters settings). These parameters will have an effect on each other so it always advisable to tune each parameter accordingly in order to achieve optimal machine performance. Please refer to the steps below

Steps	Functions	Explanation
Inertia ratio	Online	Motor moves with command from controller, servo driver will automatically calculate load-inertia ratio
identification	Offline	Using servo driver inertia determining function, servo driver can automatically calculate load-inertia ratio
Auto gain adjustment	Auto gain adjustment	Real time determining of mechanical load, gain value is set accordingly. 1. One-click tuning (Can be realized using Motion Studio. Auto tuning of gain and inertia according to actual data) 2. Real time auto adjustment (Set by selecting mechanical stiffness level, related gain parameters will be automatically adjusted accordingly)
	Basic gain	On top of auto gain adjustment, manually adjust related parameters so that machine can have better responsiveness and following
	Basic steps	 Gain related parameters tuning under position mode Gain related parameters tuning under velocity mode Gain related parameters tuning under torque mode
Manual gain	Gain switching	Gain switching through internal data or external signal. Lower vibration at stop, shorten tuning time, improve command following.
adjustment	Model following control	Improve responsiveness, shorten positioning time (Only available in position mode)
	Command pulse filter	Set filter for position, velocity and torque command pulse.
	Gain feedforward	Enable feedforward function to improve following behavior
	Friction compensation	Reduce the effect of mechanical friction
	3 rd gain switching	Base on usual gain switching function. Can be set to switch gain at stopping and reduce positioning time.
Vibration	Mechanical	Using notch filtering function to suppress mechanical
suppression	resonance	resonance.
	End vibration suppression	To suppress low frequency vibration of mechanical end
	1 - 2FF	

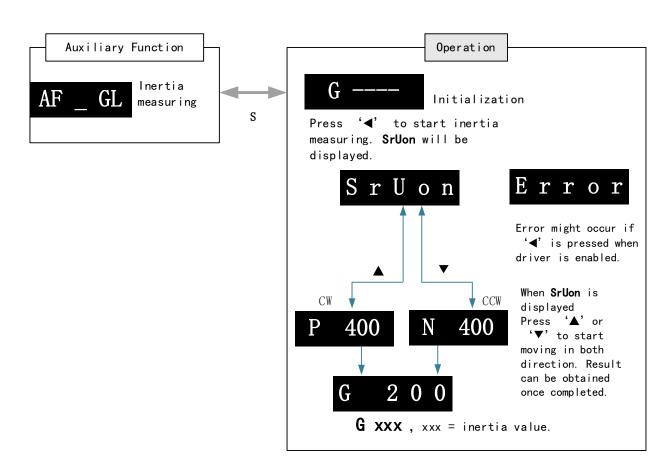
6.2 Inertia ratio identification

Inertia ratio = Total mechanical load rotational inertia / Electronic gear rotational inertia

Inertia ratio is an important parameter. Setting a suitable value can help with the precise tuning of the servo system. Inertia ratio can be set manually and also be determined automatically through servo driver

to

6.2.1 Online inertia determination


Enable motor using controller. Let motor run at above 400rpm, make sure there are acceleration, constant velocity and deceleration phase during the whole run. Cycle through 2-3 times to calculate load-inertia ratio. Result can be found on the front panel d16 or through Motion Studio system monitoring page. Enter the calculated value into Pr0.04 and save.

6.2.2 Offline inertia determination

Can be achieved through driver front panel or on Motion Studio Please make sure: 1. Servo driver is disabled.

2. Axis is within safe and allowed range and limit switch is not triggered prevent axis from over travelling.

Auxiliary function to determine inertia on front panel

Steps:

- 1. Set the trial run velocity **Pr6.04**. Value set shouldn't be too large, please keep it at around **400 r/min**.
- 2. Enter **AF_GL** for auxiliary function Inertia ratio determination into front panel
- 3. Press S once to enter. "G---" will be displayed on the front panel.
- 4、Press

 once to display "StUon"
- 5. Press ▲ or ▼ once to start to calculate the inertia.
- 6. After the calculation is done, G xxx will be displayed and xxx is the value of inertia calculated.
- 7. Write the corresponding value into Pr0.04. Please refer to for parameter saving on servo driver.

Inertia measuring using Motion Studio

- 1. Start Motion Studio and maneuver to inertia measuring page under performance tuning. Set trial run velocity Pr6.04 and acc-/deceleration time Pr6.25, click on 'Upload' to upload parameters to servo driver.
- 2. Tick "Prohibit external enabling" and click on "servo on".
- 3. Click and hold "CCW" to start the motor. Current position will show motor cycles of revolution. Click on POS 1 to save current position as starting point. Click and hold "CW" to start the motor again. Click on POS 2 to save current position as ending point.
- 4. Set the waiting time between each cycle in Pr6.21 and no. of cycles in Pr6.22. Click on 'Run' and motor will run according to the parameters set.
- 5. After the calculation is done, inertia ratio will be calculated automatically and click on 'write' to enter the calculated value into Pr0.04.
- 6. Click on "to enter parameters management to check or modify Pr0.04. Then, click on "to save parameters to driver.

Please take note:

- 1. Trial run velocity and distance should be optimal to prevent any axis from bumping into objects.
- 2. It is recommended to move only in 1 direction for vertically mounted axis. Take precaution before moving the axis.
- 3. For applications with higher frictional drag, please set a minimal travel distance.

	Name	Inertia ratio			Mode					F
Pr0.04	Range	0~2000 0	Unit	%	Default	250	Ind	ex	2004h	ı
	Activation	Immediate	е							

Pr0.04=(load inertia/motor rotational inertia)×100%

Notice:

Set inertia ratio according to actual load inertia. When both are uniform, actual motor velocity loop responsiveness and gain settings will be consistent. If inertia ratio is greater than actual value, velocity loop gain settings will be higher and vice versa.

		•
1.0	mmon	ICCLIDE
CU		issues

Error	Cause	Solution
	Loose load connection	Check for mechanical failure
Inertia ratio	Measuring distance is too short	Increase measuring distance
identification		Please pre-set an inertia ratio when
failure	Belt load	using a belt to prevent jolt due to low
		inertia.

6.3 Easy Tuning

6.3.1 Single Parameter Tuning

Set a mechanical stiffness level and the driver will automatically tune the parameters accordingly, including inertia measuring and vibration suppression to fulfill responsiveness and stability needs. At same time, more advanced functions can be applied, for example: Command pulse filter, low frequency vibration suppression, etc.

Recommended for applications where inertia changes is minute. Single parameter tuning is more complicated to set up compared to one-click tuning. Use single parameter tuning when one-click tuning doesn't fulfill the needs.

	Recommended application scenarios
Control	Suitable in position mode or EtherCAT mode (Not applicable in other modes)
mode	
Others	Servo ON (SRV-ON) status
	> Set suitable position/torque limit so that motor can run normally
	Use trial run or any external controller to make sure no clash of axes

	Factors affecting single parameter tuning
	External load smaller or 30 times larger than rotor inertia
Load inertia	Inertia measuring might fail upon changes in load inertia
	Load torque changes drastically
	➤ Mechanical stiffness is too low
Load	Existence of gear backlash or any other non-linear factors
	Complicated mechanical load structure
	➤ Low speed, no more than 300[r/min].
Motion	Acceleration/deceleration time too long, more than = 600ms
MOUOTI	> Speed > 300r/min, acceleration/deceleration time < 600ms but travelling
	time duration < 50ms.

6.3.2 One-click Tuning


This function is able to automatically tune the most optimal gain parameters for the specific applications after the axis is in operation and learning. Corresponding paths and responsiveness level need to be set before using this function. Please refer to the flow chart below. Parameter will be saved to parameters file and can be used on similar axes.

Recommended for applications where inertia changes is minute.

	Recommended application scenarios			
Control	Suitable in position mode or EtherCAT mode (Not applicable in other modes)			
mode				
Others	> Make sure servo drive can't be enabled externally or any external			
	command that can rotate the motor. Set range of movement, velocity and			
	acceleration/deceleration time for one-click tuning.			
	> Prohibit external command. Make sure there is no obstacle within the			
	range of movement of the axis and motor can rotate freely.			

	Factors affecting one-click tuning
	External load smaller or 30 times larger than rotor inertia
Load inertia	Drastic changes in load inertia during motion.
	Under heavy load (more than 30 times inertia), please make sure of safety
	Mechanical load is loosely connected.
Load	Existence of gear backlash or any other non-linear factors
	Complicated mechanical load structure
	> Range of movement is too short or too long which cost the time to be
Motion	overdue.
	➤ Not smaller than 0.5R

6.4 Auto gain adjustment

This function will measure real time mechanical properties and set gain values in accordance to mechanical stiffness. Can be used in any control mode

Conditions to implement						
Control mode	Please refer to Pr0.02 for detailed explanations. Auto gain adjustment is					
Control mode	different for each control mode.					
	Servo driver needs to be enabled					
Other	Set up input signals such as deviation counter clearing and command input; Torque limit and other motion control parameters to enable motor to move normally without obstacles.					

Under certain conditions, external factors might affect automatic gain adjustment functions. If the conditions as listed exist or unfavorable, please disable the automatic gain adjustment function.

	Affecting conditions
Load inertia	If inertia is less than 3 times or over 20 times of rotor inertia.
Load mertia	Changes in load inertia
Load	Very low mechanical stiffness
Loau	If gear backlash is a non-linear property
	Velocity less than 100r/min or continuously in low velocity mode
	Acc-/deceleration to 2000r/min within 1s. 。
Motion	 Acc-/deceleration torque lower than eccentric load, frictional torque.
Motion	· Velocity < 100r/min, acc-/deceleration to 2000r/min within 1s but not longer
	than 50ms

To enable automatic gain adjustment:

- 1. Disable the servo driver.
- 2. Set Pr0.02 = 0x01/0x11 or 0x02/0x12. Then, set Pr0.03
- 3. Servo enabled. Run motion as normal to start measuring load properties.

Related parameters will be automatically set.

- 4. Increase motor responsiveness by increasing Pr0.03. Please check if there is any vibration before setting Pr0.03 to max. value.
 - 5. Save the parameters.

Please take note:

- Please stop the motor before modifying any parameter. Pr0.02 only takes effect after saving modified parameter values into EEPROM and restarting the driver.
- After enabling the servo driver for the first time or when increasing Pr0.03, mechanical noise or vibration might occur for the first run, it is normal. If it persists, please set Pr0.03 to lower value.

Parameters that change in accordance to real time gain adjustment

No.	Parameters	Label	Remarks
1	Pr1.00	1 st position loop gain	
2	Pr1.01	1 st velocity loop gain	
3	Pr1.02	1 st velocity integral time	
		constant	
4	Pr1.03	1 st velocity detection filter	Mhan atiffy and potting is valid
5	Pr1.04	1 st torque filter	When stiffness setting is valid,
6	Pr1.05	2 nd position loop gain	parameters will be updated to match stiffness value
7	Pr1.06	2 nd velocity loop gain	Stillless value
8	Pr1.07	2 nd velocity integral time	
		constant	
9	Pr1.08	2 nd velocity detection filter	
10	Pr1.09	2 nd torque filter	

If auto gain adjustment is valid, the parameters listed above can't be manually modified.

Only when Pr0.02 = 0x00 or 0x10, can the gain related parameters be modified manually.

Gain related parameters that don't change with the real time gain adjustment

No.	Parameter	Label
1	Pr1.10	Velocity feedforward gain constant
2	Pr1.11	Velocity feedforward filter time constant
3	Pr1.12	Torque feedforward gain
4	Pr1.13	Torque feedforward filter time constant
5	Pr1.15	Position control gain switching mode
6	Pr1.17	Position control switching level
7	Pr1.18	Position control switching hysteresis
18	Pr1.19	Position gain switching time

Types of mechanical load

Please select mechanical load according to load-inertia ratio and mechanical structures:

Load types	Description
0x00_: Rigid structure	When load is rigid with relatively low inertia. Gain adjustments
	prioritize system responsiveness. Structures including high
	precision reducer, lead screws, mechanical gears, etc.
0x01_: High inertia	High load inertia (10 times or above). Gain adjustments prioritize
	operation stability and responsiveness. Recommended
	mechanical stiffness level not more than 15.
0x02_: Flexible structure	When load is flexible with relatively high inertia. Gain
	adjustments prioritize operation stability. Structures including
	long transportation belt or chain.

Structures with high inertia can have better performance if inertia ratio is set accurately.

		Name	Real time Au Adjusting	uto Gain		Valid Mode						F
	Pr0.02	Range	0x0~0xFF F	Unit		Default	0x00	01	Index		2002h	า
		Activation	Immediate									

Data	Category	e real time auto o	Application
bits	Category	Settings	Application
- Bito		motion character recommended to special requiren	tion setting mode, which can be selected according to the eristics or setting requirements. Generally, it is so select mode 1 with good generality when there is no ment, mode 2 when rapid positioning is needed If mode 1 mot meet the requirements, please choose mode 0.
0x00_	Matian	0:Manual	Pr0.03 invalid. Gain value must be adjusted manually and accordingly.
	Motion setting mode	1:Standard	Pr0.03 valid. Quick gain adjusting can be achieved by changing Pr0.03 stiffness value. Gain switching is not used in this mode, suitable for applications with requirements for stability.
		2:Positioning	Pr0.03 valid. Quick gain adjusting can be achieved by changing Pr0.03 stiffness value. This mode is suitable for applications requiring quick positioning. Not recommended for load mounted vertical to ground, or please compensate for the load using Pr6.07
		Used to select t mechanical stru	he load type, choose according to load-inertia ratio and acture.
0x0_0	Load type	0: Rigid structure	This mode prioritizes system responsiveness. Use this mode when there is a relatively rigid structure with low load inertia. Typical application including directly connected high-precision gearbox, lead screw, gears, etc.
_	setting	1:High inertia	For applications with higher load inertia (10 times or above), gain settings take into account both machine stability and responsiveness. Not recommended to set stiffness above 15 for high load inertia.
		2: Flexible structure	This mode prioritizes system stability. Use this mode when there is low rigidity structure with high load inertia. Typical applications included belts and chains.
0x_00	reserved		

The setting type combination is a hexadecimal standard, as follows:

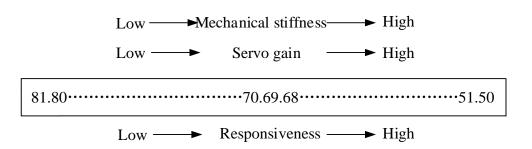
Setting type combination	Application type
0X000	Rigid structure Manual
0X001	Rigid structure +Standard
0X002	Rigid structure +Positioning
0X010	High inertia + Manual

Pr0.03

Name

Real time auto stiffness adjusting

Mode


F

Range

So ~ 81 Unit — Default 70 Index 2003h

Activation Immediate

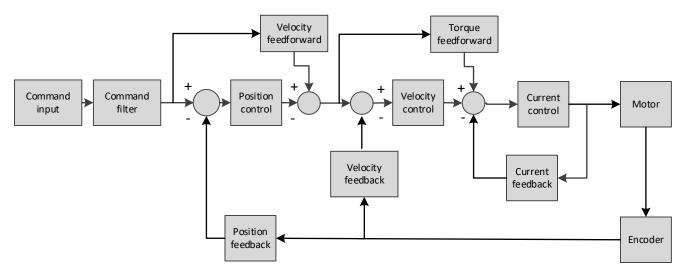
Valid when Pr0.03 = 1,2

Lower values ensure better system responsiveness and mechanical stiffness but machine vibration might occur, please set accordingly.

Gain parameters settings table

		1	st gain		2 nd gain				
S	Pr1.00	Pr1.01	Pr1.02	Pr1.04	Pr1.05	Pr1.06	Pr1.07	Pr1.09	
Stiffness	Position loop gain (0.1/s)	Velocity loop gain (Hz)	Velocity loop integral time constant (0.1ms)	Torque filter (0.01ms)	Position loop gain (0.1/s)	Velocity loop gain (Hz)	Velocity loop integral time constant (0.1ms)	Torque filter (0.01ms)	
0	20	15	3700	1500	25	15	10000	1500	
1	25	20	2800	1100	30	20	10000	1100	
2	30	25	2200	900	40	25	10000	900	
3	40	30	1900	800	45	30	10000	800	
4	45	35	1600	600	55	35	10000	600	
5	55	45	1200	500	70	45	10000	500	
6	75	60	900	400	95	60	10000	400	
7	95	75	700	300	120	75	10000	300	
8	115	90	600	300	140	90	10000	300	
9	140	110	500	200	175	110	10000	200	
10	175	140	400	200	220	140	10000	200	
11	320	180	310	126	380	180	10000	126	

User manual of EL8-EC***F AC Servo


12	390	220	250	103	460	220	10000	103
13	480	270	210	84	570	270	10000	84
14	630	350	160	65	730	350	10000	65
15	720	400	140	57	840	400	10000	57
16	900	500	120	45	1050	500	10000	45
17	1080	600	110	38	1260	600	10000	38
18	1350	750	90	30	1570	750	10000	30
19	1620	900	80	25	1880	900	10000	25
20	2060	1150	70	20	2410	1150	10000	20
21	2510	1400	60	16	2930	1400	10000	16
22	3050	1700	50	13	3560	1700	10000	13
23	3770	2100	40	11	4400	2100	10000	11
24	4490	2500	40	9	5240	2500	10000	9
25	5000	2800	35	8	5900	2800	10000	8
26	5600	3100	30	7	6500	3100	10000	7
27	6100	3400	30	7	7100	3400	10000	7
28	6600	3700	25	6	7700	3700	10000	6
29	7200	4000	25	6	8400	4000	10000	6
30	8100	4500	20	5	9400	4500	10000	5
31	9000	5000	20	5	10500	5000	10000	5

6.5 Manual gain adjustment

Due to limitation of load conditions, automatic gain adjustment might not achieve expected performance. Control can be improved through manual gain adjustment

The servo system is made up of 3 control loops. From outer to inner: position loop, velocity loop, current loop as shown in the diagram below.

Inner control loop demands higher responsiveness. In order to avoid system instability, please tune in accordance to this principle. Current loop gain usually satisfies the responsiveness demand without tuning. When gain adjustment is done under position control mode, in order to keep the system stabile, position and velocity loop gain have to be increased at the same time to make sure the responsiveness of the position loop is lower than velocity loop.

Steps to tuning (Position and velocity control)

For servo gain, if any one of the parameters is changed, please modify other gain related parameters accordingly. Make sure to the change at around 5% and follow the rules as below.

- 1) Increase responsiveness
 - a) Reduce torque command filter time
 - b) Increase velocity loop gain
 - c) Decrease velocity loop integral time
 - d) Increase position loop gain
- 2) Decrease responsiveness, prevent vibration and over shoot
 - a) Reduce position loop gain
 - b) Increase velocity loop integral time
 - c) Reduce velocity loop gain
 - d) Increase torque filter time

										CS		1
	Name	1 st positio	n loop ga	iin	Mode	PP			НМ	P		
Pr1.00	Range	0~3000 0 Unit 0.1/s			Default	320 Index					2100h	n
	Activation	Immediat	е									

Higher position loop gain value improves the responsiveness of the servo driver and lessens the positioning time.

Position loop gain value shouldn't exceed responsiveness of the mechanical system and take in consideration velocity loop gain, if not it might cause vibration, mechanical noise and overtravel.

As velocity loop gain is based on position loop gain, please set both values accordingly.

Recommended range: 1.2≤Pr1.00/Pr1.01≤1.8

Pr1.02	Name	1 st Integra of Velocity		onstant	Mode					F
	Range	1~1000 0 Unit 0.1ms			Default	310	Index		2102h	l
	Activation	Immediate	Э							

If auto gain adjusting function is not enabled, Pr1.02 is activated.

The lower the set value, the closer the lag error at stop to 0 but might cause vibration. If the value set is overly large, overshoot, delay of positioning time duration and lowered responsiveness might occur.

Set 10000 to deactivate Pr1.02.

Recommended range: 50000≤PA1.01xPA1.02≤150000

For example: Velocity loop gain Pr1.01=500(0.1Hz), which is 50Hz. Integral time constant of velocity loop should be 100(0.1ms)≤Pr1.02≤300(0.1ms)

Pr1.04	Name	1 st Tord	que Filte nt	er Time	Mode				F
	Range	0~250 0 Unit 0.01ms			Default	126	Index	2104h	1
	Activation	Immedia	ate						

To set torque command low-pass filter, add a filter delay time constant to torque command and filter out the high frequencies in the command.

Often used to reduce or eliminate some noise or vibration during motor operation, but it will reduce the responsiveness of current loop, resulting in undermining velocity loop and position loop control. Pr1.04 needs to match velocity loop gain.

Recommended range: 1,000,000/(2π×Pr1.04) ≥Pr1.01×4

For example: Velocity loop gain Pr1.01=180(0.1Hz) which is 18Hz. Time constant of torque filter should be Pr1.01≤221(0.01ms)

If mechanical vibration is due to servo driver, adjusting Pr1.04 might eliminate the vibration. The smaller the value, the better the responsiveness but also subjected to machine conditions. If the value is too large, it might lower the responsiveness of current loop.

With higher Pr1.01 value settings and no resonance, reduce Pr1.04 value;

With lower Pr1.01 value settings, increase Pr1.04 value to lower motor noise.

6.6 Parameters adjustment under different control modes

Under different control mode, parameters adjustment has to be adjusted in this order: "Inertia measuring" -> "Auto gain adjustment"-> "Manual gain adjustments"

Position control mode

Set load-inertia ratio Pr0.04 after inertia determination.

No.	Parameter	Label
1	Pr1.00	1 st position loop gain
2	Pr1.01	1 st velocity loop gain
3	Pr1.02	1 st velocity integral time constant
4	Pr1.03	1 st velocity detection filter
5	Pr1.04	1 st torque filter time constant
6	Pr1.05	2 nd position loop gain
7	Pr1.06	2 nd velocity loop gain
8	Pr1.07	2 nd velocity integral time constant
9	Pr1.08	2 nd velocity detection filter
10	Pr1.09	2 nd torque filter time constant
11	Pr1.10	Velocity feedforward gain constant
12	Pr1.11	Velocity feedforward filter time constant
13	Pr1.12	Torque feedforward gain
14	Pr1.13	Torque feedforward filter time constant
15	Pr1.15	Position control gain switching mode
16	Pr1.17	Position control switching level
17	Pr1.18	Position control switching hysteresis
18	Pr1.19	Position gain switching time

1st and 2nd gain initial values are obtained by automatic gain adjustment

No.	Parameter	Label
1	Pr1.00	1 st position loop gain
2	Pr1.01	1 st velocity loop gain
3	Pr1.02	1 st velocity integral time constant
4	Pr1.03	1 st velocity detection filter
5	Pr1.04	1 st torque filter time constant
6	Pr1.05	2 nd position loop gain
7	Pr1.06	2 nd velocity loop gain
8	Pr1.07	2 nd velocity integral time constant
9	Pr1.08	2 nd velocity detection filter
10	Pr1.09	2 nd torque filter time constant

Manually adjusted gain parameters

No.	Parameter	Label
1	Pr1.00	1 st position loop gain
2	Pr1.01	1 st velocity loop gain
3	Pr1.02	1 st velocity integral time constant
4	Pr1.04	1 st torque filter time constant
5	Pr1.10	Velocity feedforward gain constant
6	Pr1.11	Velocity feedforward filter time constant

Velocity control mode

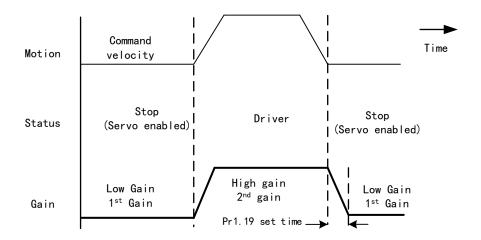
Velocity control mode parameters adjustment is pretty similar to position control mode. Except for position loop gain Pr1.00 and Pr1.05, velocity feedforward gain (Pr1.10)

Torque control mode

Parameters adjustment for torque control mode has to be differentiate into 2 conditions:

- 1. When actual velocity reaches velocity limit, adjustment will be as per velocity control mode. Motor will switch from torque control to velocity limit as velocity control.
- When actual velocity doesn't reach velocity limit yet, Except for position loop gain, velocity loop gain and feedforward gain, parameter adjustments as per velocity control mode.

If there is no velocity limit and control is through torque command, please deactivate torque and notch filter, set velocity limit to max. value and increase velocity loop gain to as high as possible.


6.7 Gain switching

Gain switching function can be triggered internally in servo driver. Only valid under position or velocity control mode. Following effects can be realized by gain switching:

- 1. Switch to lower gain when motor stops to suppress vibration
- 2. Switch to higher gain when motor is moving at a low velocity to shorten positioning time
- 3. Switch to higher gain when motor is moving at a high velocity to improve command following behavior.

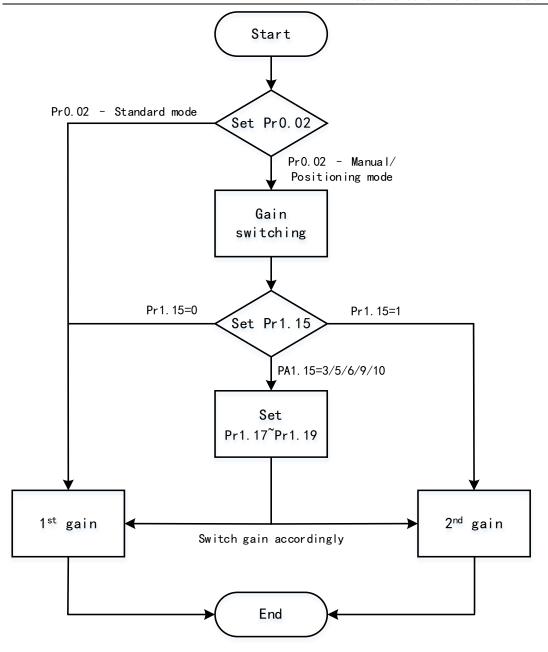
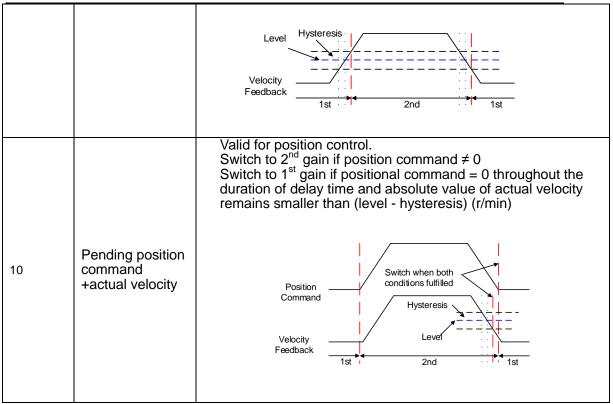


Diagram below shows gain switching when motor stops.

1st gain (Pr1.00-Pr1.04) and 2nd gain (Pr1.05-Pr1.09) switching can be realized through manual and positioning mode. Switching condition is set through Pr1.15. Gain switching is invalid under standard mode.

Related	parameters	on gain switching

No.	Parameter	Label	Remarks						
		Position control gain	In position control, set Pr1.15=3、5、6、						
1	Pr1.15	switching mode	9、10.						
		Switching mode	In velocity control, set Pr1.15=3、5、9						
2	Pr1.17	Position control level	Please set Pr1.17≥Pr1.18						
		switching							
3	Pr1.18	Position control	If Pr1.17 <pr1.18, driver="" pr1.17<="" set="" td="" will=""></pr1.18,>						
J	F11.10	hysteresis switching	=Pr1.18						
4	Pr1.19	Position gain time							
		switching							



	Name			on control	gain	Mode						F	
1.15	Range		0~11	Unit	_	Default	0	Ind	dex		ralue	ħ	
	Activat	ion	Imme	diate			•			solute value olute value			
Se Va	et ilue	Range 0 Activation Ir		Gain swi	Gain switching condition								
0		1 st gain fixe	d		_	gain(Pr1.00-	-						
1		2 nd gain fixe	ed	Fixed on	using 2 nd	' gain (Pr1.05	-Pr1.09)					
2		Reserved											
3		High set tor	que	Switch larger Switch smalle	than (lev to 1 st ga r than (le Hysteresis Level	el + hysteres in when set to evel + hystere	torque cois)[%] orque cois)[%] onstant speed	Deceleration	l abso	lute va	alue		
4		Reserved		Reserved	k								
5		High set ve	locity	Valid for Switch larger Switch smalle	y		2nd y contro velocity is)[r/min elocity o	I. comman	1st		value ralue		

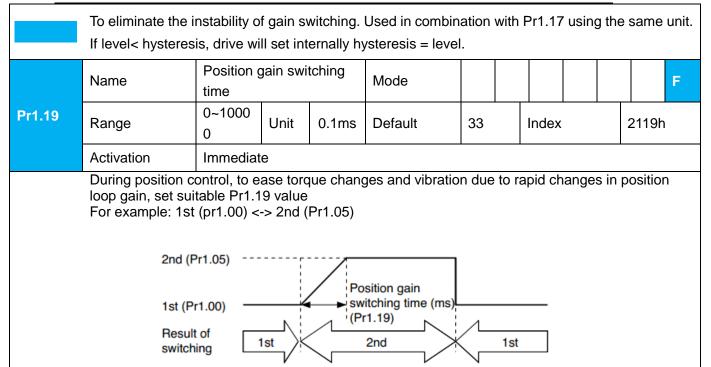
		User manual of EL8-EC***F AC Servo
6	Large position deviation	Valid for position control. Switch to 2 nd gain when position deviation absolute value larger than (level + hysteresis)[pulse] Switch to 1 st gain when position deviation absolute value smaller than (level-hysteresis)[pulse]
7	Pending position command	Valid for position control. Switch to 2 nd gain if position command ≠ 0 Switch to 1 st gain if position command remains = 0 throughout the duration of delay time.
8	Not yet in position	Valid for position control. Switch to 2 nd gain if position command is not completed. Switch to 1 st gain if position command remains uncompleted throughout the duration of delay time.
9	High actual velocity	Valid for position control. Switch to 2 nd gain when actual velocity absolute value larger than (level + hysteresis)[r/min] Switch to 1 st gain when actual velocity absolute value remains smaller throughout the duration of delay time than (level-hysteresis)[r/min]

For position control mode, set Pr1.15=3,5,6,9,10; For velocity control mode, set Pr1.15=3,5,9;

** Above 'level' and 'hysteresis' are in correspondence to Pr1.17 Position control gain switching level and Pr1.18 Hysteresis at position control switching.

	Name	Position of switching	_	gain	Mode					F
Pr1.17	Range	0~2000 0	Unit	Mode dependent	Default	50	Index		2117h	1
	Activation	Immediat	e							

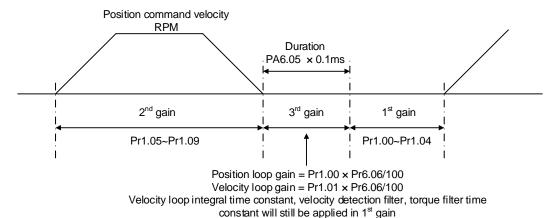
Set threshold value for gain switching to occur.


Unit is mode dependent.

Switching condition	Unit
Position	Encoder pulse count
Velocity	RPM
Torque	%

Please set level ≥ hysteresis

	7 10400 001 10 101	- 117 0101 001									
Pr1.18	Name	Hysteresi control sv	-	ition	Mode						F
	Range	0~2000 Unit Mode dependent			Default	33	Inde	x		2118h	
	Activation	Immediate									



6.7 3rd Gain Switching

Besides switching between 1st and 2nd gain, a 3rd gain switching is added to set gain at the moment of stopping to reduce positioning time.

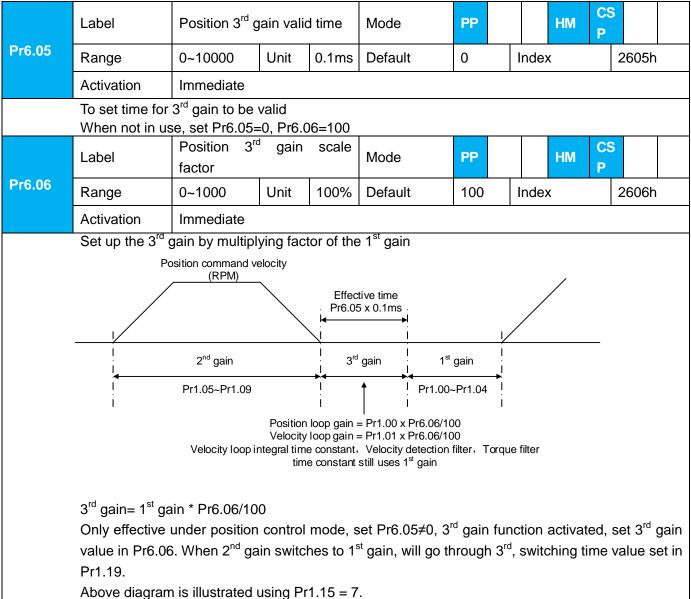

Only available under position mode and Pr6.05 ≠ 0, set Pr6.06 for 3rd gain value. When 2nd gain switches to 1st gain, it has to go through 3rd gain, switching time is set in Pr1.19.

Diagram below shows when Pr1.15 = 7.

Related parameters

6.8 Feedforward gain

In position control, velocity feedforward is calculated by comparing the velocity control command calculated internally and velocity command calculated from position feedback. Comparing to control only using feedbacks, this will reduce position deviation and increase responsiveness. Besides, by comparing the torque needed during motion from velocity control command in comparison with velocity feedback, torque feedback can be calculated to improve system responsiveness.

6.8.1 Velocity feedforward

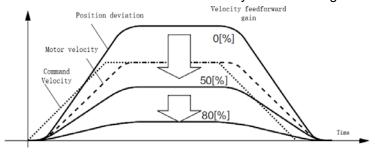
Velocity feedforward can be used in position control mode. When the function is enabled, it can increase velocity responsiveness, reduce position deviation during constant velocity.

Pr1.10	Name	Velocity gain	feed	forward	Mode	PP			НМ	CS P		
	Range	0~1000	Unit	0.10%	Default	300		Index	<		2110h	
	Activation	Immediat	Immediate									

Used for decreasing following error caused by low responsiveness of velocity loop. Might cause overshoot or increase in noise if set value is too high.

Pr1.11	Name	Velocity filter time		forward nt	Mode	PP		НМ	CS P				
	Range	0~6400	Unit	0.01ms	Default	50	Inde	Index			2111h		
	Activation	Immediate											

Set velocity feed forward low pass filter to eliminate high or abnormal frequencies in velocity feed forward command. Often used when position command with low resolution or high electronic gear ration to smoothen velocity feed forward.


Position deviation under constant velocity can be lowered with higher velocity feed forward gain.

Please to refer to the equation below.

 $\frac{100 - Velocity feed foward gain [\%]}{Position loop gain [Hz]} \times \frac{100 - Velocity feed foward gain [\%]}{100}$ Position deviation[Uint]=

Velocity feedforward application

Set Pr1.11 to around 50 (0.5ms), then tune Pr1.10 from 0 to bigger values until the velocity feedforward achieves better performance. Under constant velocity, the position deviation in a motion will decrease as the velocity feedforward gain increase.

Steps to tuning:

- Increase Pr1.10 to increase responsiveness but velocity overshoot might occur during acc-/deceleration.
- By reducing Pr1.11, velocity feedforward would be more effective and vice versa. Pr1.10 and Pr1.11 need to be tuned to a balance.
- If mechanical noise exists under normal working conditions, please increase Pr1.11 or use position command filter (1 time delay/ FIR smoothing filter)

6.8.2 Torque feedforward

Position control mode: Torque feedforward can increase the responsiveness of torque command, decrease position deviation during constant

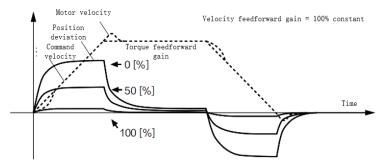
acc-/deceleration.

Velocity control mode: Torque feedforward can increase the responsiveness of torque command,

decrease velocity deviation during constant velocity.

	Name	Torque gain	feed	forward	Mode	PP	PV	НМ	CS P	CS V			
Pr1.12	Range	0~100 0	Unit	0.1%	Default	0		Index		2	2112h		
	Activation	Immedia	ite										

Before using torque feed forward, please set correct inertia ratio. By increasing torque feed forward gain, position deviation on constant acceleration/deceleration can be reduced to close to 0. Under ideal condition and trapezoidal speed profile, position deviation of the whole motion can be reduced to close to 0. In reality, perturbation torque will always exist, hence position deviation can never be 0.

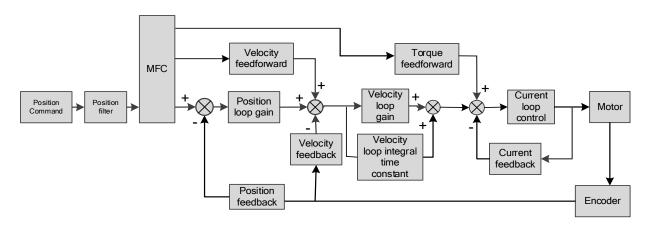

	Name	Torque filter time		forward int	Mode	PP	PV	НМ	CS P	CS V	5		
Pr1.13	Range	0~640 0	Unit	0.01ms	Default	0		Index			211	3h	
	Activation	Immedia	ite										

Low pass filter to eliminate abnormal or high frequencies in torque feed forward command. Usually used when encoder has lower resolution or precision.

Noise reduces if torque feed forward filter time constant is set higher but position deviation will increase at acceleration varied points.

Torque feedforward application

Set Pr1.13 to around 50 (0.5ms), then tune Pr1.10 from 0 to bigger values until torque feedforward achieves better performance. Under constant acc-/deceleration, the position deviation in a motion will decrease as the velocity feedforward gain increase.


Steps to tuning:

- 2. Increase Pr1.12 to increase responsiveness but velocity overshoot might occur during acc-/deceleration.
- 3. By reducing Pr1.13, torque feedforward would be more effective and vice versa. Pr1.12 and Pr1.13 need to be tuned to a balance and reduce noise.

6.9 Model following control

Model following control is a type of closed loop control system. First, an ideal model is constructed and acts as a reference for actual model in a closed loop control. Model following control can be treated as a control mode with 2 flexibilities: Model reference can be used to improve command responsiveness and closed loop control used to increase responsiveness of the system towards interference. They don't affect each other. Model following control can be used in position loop control to increase responsiveness to commands, reduce positioning time and following error. This function is only available in position control mode.

To adjust model following control

1. Automatic adjustment

Set model following bandwidth Pr0.00 = 1 for automatic adjustment. Now, Pr0.00 = Pr1.01, model following bandwidth is adjusted automatically according to different velocity loop gain.

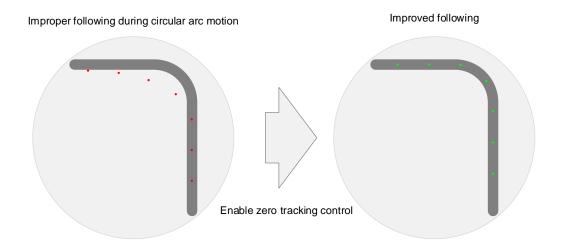
Manual adjustment

Please used manual adjustment if

- Automatic adjustment is not satisfactory.
- Responsiveness needs further improvement in comparison with automatic adjustment.
- There is a need to set servo gain or model following control parameters manually.

Steps to manually adjust

Step	Content
1	Set up vibration suppression.
2	Set up the right inertia ratio.
3	Manually adjust gain.
4	Increase Pr0.00 provided that there is no overshoot and vibration. Usually Pr0.00 ≥
	Pr1.01 is recommended.


Model following bandwidth determines the responsiveness of the servo system. Increase the value set will increase responsiveness and reduce positioning time. Overshoot can be prevented if it is set at a lower value but responsiveness will be lowered. Model following bandwidth shouldn't be too large for mechanical structure with lower stiffness, excessive position deviation alarm might occur under high velocity.

6.10 Zero tracking control

Zero tracking control (ZTC) is able to realize a zero position deviation during acceleration/deceleration. This function increase multi axis precision and master-slave following.

Recommended application:

1. Multi axis

2. Master-slave following

Used when driving axis sends frequency divider signal to lead following axis to improve the following control.

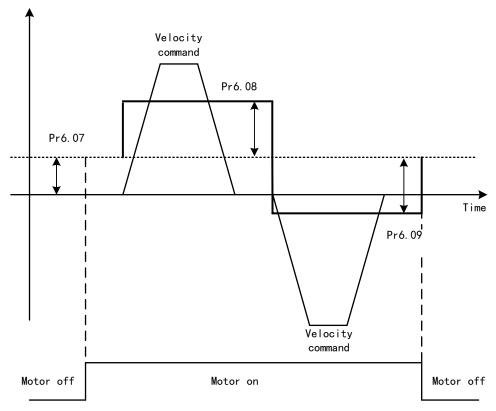
- > ZTC only available under position control mode.
- > ZTC can only be enabled when Pr0.00 is valid.
- Model following control (MFC) and Zero Tracking Control (ZTC) cannot be used together at the same time.

Zero tracking control can achieve better performance with the following limiting factors.

	Limiting factors
Electronic	Electronic gear ratio should be lower to prevent current noise.
gear ratio	
Mechanical	Better structural rigidity to prevent vibration.
structure	

Motion

- 1. Command acceleration should be continuously low to prevent deviation change during drastic changes in acceleration.
- 2. Callback or overtravel might exist in positioning; sigmoid signal command might improve the problem.


Related parameters

Parameter	Label	Description
Pr2.50	Model following	0: Model following control - Default
	control	1: Zero tracking control
Pr2.53	Dynamic friction	Range: 0-1000, unit: 0.1%
	compensation	Unit: Changes in torque with the effect of friction on
	coefficient	rotational speed.
		Only valid when MFC is activated
Pr0.00	Model following	If Pr0.00 = 0, MFC and ZTC is deactivated.
	bandwidth	When Pr2.50 = 1 (Zero tracking control), higher
		bandwidth will improve following performance but noise
		will be higher.
Set the follow	ving parameters to defau	ult
Pr2.51	Velocity feedforward	Default value = 0 for zero tracking control.
	compensation	
	coefficient	
Pr2.52	Torque feedforward	
	compensation	
	coefficient	
Pr2.54	Overtravel time	
	constant	
Pr2.55	Overtravel	
	suppression gain	

6.11 Friction compensation function

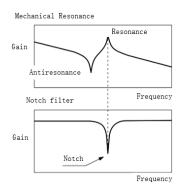
This function is to compensation for changes in load to reduce the effect of friction in motion. The compensation value is directional.

Vertically loaded axis: A constant eccentric load torque is applied on the motor. By adjusting Pr6.07, positioning deviation due to different motional direction can be reduced. Belt-driven axis: Due to large radial load with dynamic frictional torque. Positioning time delay and deviation can be reduced by adjusting Pr6.08 and Pr6.09.

uoia,	and deviation t		a by aaje	g .									
	Name	Torque comm	nand add	itional	Mode			F					
		value											
Pr6.07	Range	-100~100	Unit	%	Default	0	Index	2607h					
	Activation	Immediate											
	To set torque for	orward feed add	ditional v	alue of v	ertical axis.								
	Applicable for le	oaded vertical a	vertical axis, compensate constant torque.										
	Application: Wh	nen load move	along ve	rtical axi	s, pick any po	int from th	e whole motio	n and stop the					
	load at that par	ticular point wit	h motor e	enabled	but not rotatir	ng. Record	output torque	value from d04,					
	use that value a	as torque comn	nand add	litional v	alue (compen	sation valu	ıe)						
	Name	Positive direc	tion torqu	ue	Mode			F					
		compensation	n value										
Pr6.08	Range	-100~100	Unit	%	Default	0	Index	2608h					
	Activation	Immediate	•			•		•					
Pr6.09	Name	Negative dire	ction tord	que	Mode			F					

	compensation	n value										
Range	-100~100	Unit	%	Default	0	Index		2	2609h			
Activation	Immediate							•				
	luce the effect of mechanical friction in the movement(s) of the axis. Compensation values can be cording to needs for both rotational directions.											
Applications:												
1. When motor is	s at constant sp	eed, d04	4 will deli	ver torque value	s.							
Torque value in ¡	positive direction	n = T1;										
Torque value in ı	negative directi	on = T2										
Pr6.08/Pr6.09 =	$T_{f} = \frac{\left T1 - T2\right }{2}$											

6.12 Vibration Suppression


6.12.1 Mechanical resonance suppression

Mechanical system has certain resonance frequencies. When servo gain is increased, resonance might occur at around mechanical resonant frequencies, preventing gain value from increasing. In such situation, notch filter can be used to suppress resonance to set higher gains or lower vibration.

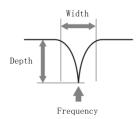
To suppress mechanical resonance:

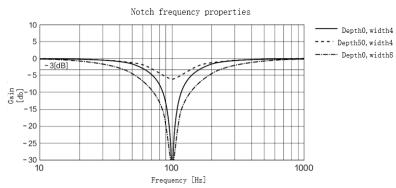
- Torque command filter time constant
 Set filter time constant to reduce gain at around resonant frequencies
 Torque command filter blocked frequencies (Hz) fc=1/
 [2π×PA1.04(0.01ms)×0.00001)]
- 2. Notch filter

Notch filter suppress mechanical resonance by reducing gain at certain frequencies. When notch filter is correctly set, resonance can be suppressed and servo gain can be increased.

Notch filter bandwidth

Center frequency of the notch filter, frequency bandwidth with reduction of -3dB.




Notch filter depth

The ratio between input and output of center frequency.

When depth = 0, center frequency output is totally off and when depth = 100,

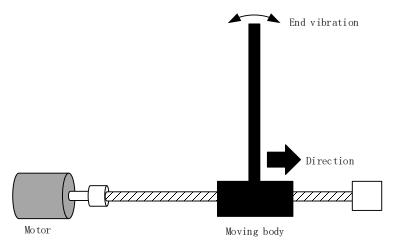
Hence when notch filter depth is set at lower value, the depth is higher and better at suppressing mechanical resonance but it might cause system instability.

If the ____ from mechanical properties analysis tool doesn't show any obvious peak but vibration did occur, it might not be due to mechanical resonance, it may be that servo gain has reached its limit. This kind of vibration can't be suppressed by using notch filter, only by reducing gain and torque command filter time.

To use notch filter

Automatic notch filter

- 1. Set Pr2.00 = 1 for auto notch filter adjustment
- 2. If Pr0.03 stiffness increases, 3rd group of notch filter (Pr2.07/Pr2.08/Pr2.09) updates automatically when driver is enabled. Pr2.00 = 0, auto adjustments stop. If resonance is suppressed, it means self-adjusting notch filter is working. If resonance occurs when mechanical stiffness increases, please use manual notch filter, set filter frequency to actual resonant frequency.

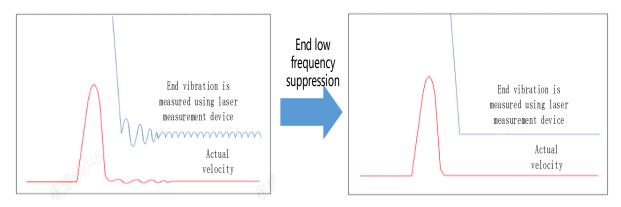

Manual notch filter

There are 2 ways to use manual notch filter.

- 1. After enabling self-adjusting notch filter, set the values from 3^{rd} group of filters to 1^{st} group of notch filter (Pr2.01/Pr2.02/Pr2.03), see if resonance is suppressed. If there is other resonance, set Pr2.00 = 1, then set the values from 3^{rd} group of filters to 2^{nd} group of notch filter (Pr2.04/Pr2.05/Pr2.06)
- 2. Get resonant frequency, notch filter bandwidth and depth and set it into the corresponding parameters through Motion Studio.

6.12.2 End vibration suppression

If the mechanical has an end that is long and heavy, it might cause end vibration at emergency stop and affect the positioning. Usually happens on long armed axis with loose end. The frequency is usually within 100Hz which is lower than mechanical resonant frequencies. It is called low-frequency resonance which can be prevented by applying low frequency suppression function.


To apply low frequency suppression

- 1. Trace current/ position deviation waveform when motion stops.
- 2. Measure the vibration cycle T1 of current waveform.
- 3. Convert T1 into low frequency resonance by F1 = 1/T1
- 4. Write F1 into Pr2.14
- 5. If some other low frequency resonance occurs, please repeat step 1-3 and write F2 into Pr2.16.

The result of suppressing low frequency resonance

6.12.3 Mechanical properties analysis

This function is available on Motion Studio. Mechanical properties analysis is used to determine mechanical resonance and to use filter to suppress the resonance.

6.13 Position comparison

Position comparison is achieved by using instantaneous position data in comparison with preset position in position parameters. When the condition(s) is fulfilled, a pulse width configurable DO signal or ABZ/OCZ signal through frequency divider will be delivered. This function is operated in CPLD, without communication delay between processors hence it is suitable for application where high velocity motion is required.

Posi	tion comparison	Description							
	Output	6 DO or frequency divider ABZ/OCZ signal							
		DO output valid as set in Pr4.10-Pr4.15							
Output	Logic	ABZ/OCZ output valid as set in Pr5.42							
trigger		Output mode: Pulse / Flip							
	Pulse width	Pr5.72 set pulse width							
	Delay compensation	PA5.72 compensate for hardware delay							
Comparison	Motor enclosed	Supported							
source	Closed loop ABZ encoder	Supported							
Comparison value	Points of comparison	42 points							
		Comparison ON/OFF for positive/negative							
Comparison attribute	Comparison method	crossover							
attribute		Set comparison output							

Please assign DO as CMP-OUT or ABZ-signal as position comparison output.

User manual of EL8-EC***F AC Servo Related parameters Frequency divider output source Label Mode 0~4 Unit Default 0 Index 2544h Range Pr5.44 Activation After restart Set Value Description [0] Position feedback of encoder #1(motor encoder) Position feedback of encoder #2(external encoder) 2 Reserved 3 Pulse input command position synchronous output; position comparison not available in this mode 4 Frequency divider output prohibited Label Enable position comparison Mode Range 0~1 Unit % Default 0 Index 2570h Pr5.70 Activation **Immediate** Set Value Description [0] Disable 1 Enable (Rising edge) Label Position comparison mode Mode 0~2 Unit 0 Index Default 2571h Pr5.71 Range Activation **Immediate** Set value Description [0] Single comparison 1 N cycles comparison Cycle comparison Detailed explanations is available in Chapter 6 Application under Position Comparison section Position comparison pulse output

	Label	width	Mode							F		
Pr5.72	Range	0~4095	5 Unit ms			0.1ms		Index		2572h		
	Activation	Immediate										
	To set output s	ignal pulse width o	nal pulse width of position comparison									
	Label	Position compariso	Position comparison output delay									F
		time compensation			Mode							
Pr5.73	Range	-10000~10000 Unit 0.1μs			Default	0		Inc	dex	:	2573h	

To set delay time compensation for delay due to DO/ frequency divider

After restart

Activation

User manual of EL8-EC***F AC Servo

	Label	Position compa point	rison :	starting	Mode						F
Pr5.74	Range	1~42	Unit	-	Default	1	Inc	dex	:	2574h	
	Activation	Immediate									
	To set the star	arison.									

	Label	Position compariso	Mode				F		
Pr5.75	Range	1~42	Unit	-	Default	1	Ind	dex	2575h
	Activation	Immediate							
	To set the end	point of position co	on.						

Pr5.76	Label	No. of cycle comparison	for N	cycles	Mode							F
	Range	1~50000	Unit	-	Default	1		Inc	lex		2576h	
	Activation	Immediate										
	To set the number of cycles for N cycles comparison in position comparison.											

	Label	Position comparise position as origin	Position comparison – set current position as origin									F
Pr5.77	Range	0~1	Unit	-	Default	0		Inc	dex		2577h	
	Activation	Immediate	Immediate									
	Set Value	Description										
	[0]	Disable										
	1	Enable (Rising ed	ge)									
	Set origin for	position comparisor	tion comparison, set current position as origin at rising edge.									

	Pr5 78	Label	Position comparis origin	Mode							F		
Pr5.78	Pr5.78	Range	-2 ³¹ ~2 ³¹ -1	Default	0		Ind	lex		2578h			
		Activation	Immediate										
	To set offset value of position in comparison to origin set in Pr5.77												

To set target position and its attributes for position comparison.

Pr3.32 -	Label		Position comparison 1-42 target value								F
Pr3.32 – Pr3.73	Range	-2 ³¹ ~ 2 ³¹	Unit	Comma nd unit	Default	0	Index			2323h	
	Activation	Immediate									
	When target position(value) is reached, position comparison output will be depended on the										

		User manual of EL8-EC***F AC Servo	
i	position con	mparison properties value set.	
	Label	Position comparison 1 & 2 attributes value	F
Pr3.74	Range	0~32767 Unit Comma nd unit Default 0 Index 2332h 2373h	_
	Activation	Immediate	
	Bit	Position comparison 1	
	0	Positive traversal comparison. 0=OFF,1=ON	
	1	Negative traversal comparison. 0=OFF,1=ON	
	2~5	Reserved	
	6	Output property settings: =0: Pulse mode =1: Flipping mode	
	7	DO1	
	8	DO2	
	9	DO3	
	10~12	Reserved	
	13	Frequency divider Phase A output	
	14	Frequency divider Phase B output	
	15	Frequency divider Phase Z output	
	D:t	Dacition companies a 0	
	Bit 16	Position comparison 2 Positive traversal comparison. 0=OFF,1=ON	
	17	Negative traversal comparison. 0=OFF,1=ON	
	18~21	Reserved	
	10~21	Output property settings:	
	22	=0: Pulse mode =1: Flipping mode	
	23	DO1	
	24	DO2	
	25	DO3	
	26~28	Reserved	
	29	Frequency divider Phase A output	
	30	Frequency divider Phase B output	
	31	Frequency divider Phase Z output	
	Label	Position comparison x & y attributes value	F
D-2.75			
Pr3.75~ Pr3.94	Range	0x0~0xFF	

x,y = (3,4), (5,6).....(41,42)

bit 0~15: Position comparison x; bit 16~31: Position comparison y

Please refer to Pr3.74

Working principle

> Enable position comparison Pr5.70

Position comparison function enabled when Pr5.70 is set to 1. Comparison status will be updated as position comparison starting point. When Pr5.70 is set to 0, position comparison ends and status clears.

> Single position comparison

Position comparison ends right after 1st position comparison, current comparison value will be reset to 0. Function only enables after position comparison enabling signal is detected. The actual position feedback Pr5.80 is absolute and added on top of the previous comparison, will not be reset to zero.

> Cycle comparison

Position comparison does not end right after 1st position comparison, current comparison value will be set as position comparison starting point. Actual position feedback Pr5.80 will be cleared after every comparison. Under cycle comparison, target position is relative increment. After previous comparison, actual position feedback will be cleared and restart counting, in comparison with new target position.

> N Cycle comparison

Number of cycles is set in Pr5.83. When the number of cycles set reached, position comparison function is turned off.

> Position comparison output width Pr5.72

When position comparison condition(s) fulfilled, output can be delivered through DO or frequency divider ABZ/OCZ signal. Signal pulse width can be set in Pr5.72. Please make sure the output signal width is less than the travel between 2 target positions.

Position comparison target position

42 target positions. Target position value and its corresponding attributes can be set in Pr3.32~Pr3.94.

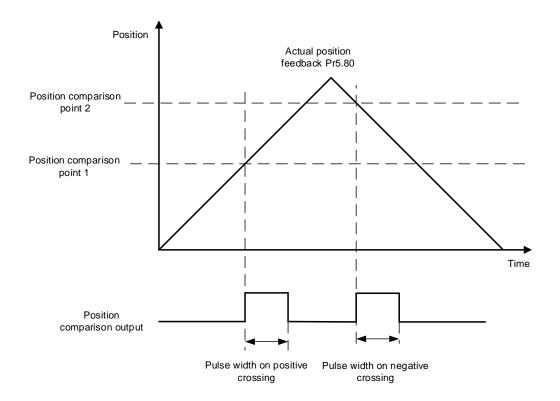
> Position comparison starting point Pr5.74

Indicates the first comparison point. For example, if Pr5.74 is set to 5, position comparison will start from 5th target position.

> Position comparison end point Pr5.75

Indicates the last comparison point. For example, if Pr5.75 is set to 7, position comparison will stop at 7th target position.

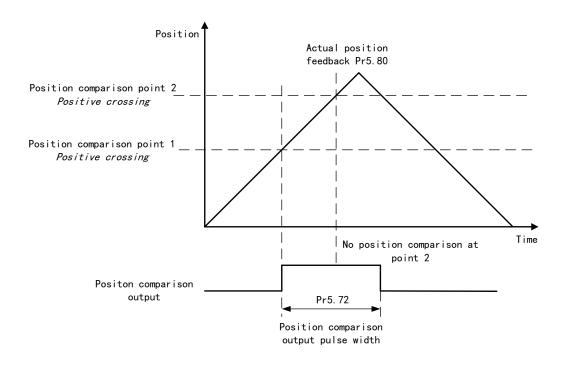
Position comparison – Offset to origin Pr5.78


When Pr5.77 is triggered, Pr5.80 actual position will automatically be set as Pr5.78 offset value.

Applying position comparison

Output pulse width is set in Pr5.72. Output pulse will be sent once the position comparison point is crossed and attributes conditions is fulfilled.

When the attribute of position comparison is set to positive crossing, position feedback becomes larger, position comparison will be enabled; if position feedback becomes smaller, it indicates negative crossing and position comparison will be disabled.


Diagram below shows position comparison point 1 as positive crossing and position comparison point 2 as negative crossing. When position comparison point 2 is positively crossed, position comparison will be disabled.

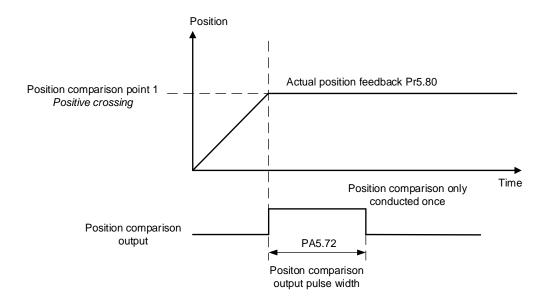
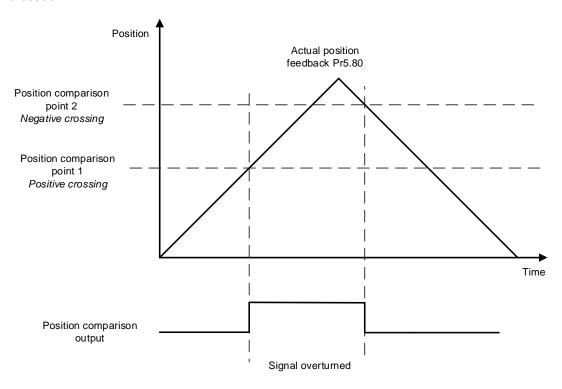

When multiple position comparison points are set, make sure the travel time between 2 comparison points are larger than the output pulse width as position comparison will be temporarily disabled during output.

Diagram below shows travel time between 2 points is smaller than output pulse width



When stopping at position comparison point, there will only be 1 pulse output as with crossing a comparison point.

In overturn mode, output pulse width will be overturned as the position comparison point is crossed.

6.14 Black box

Black box is a function which allows users to set conditions or data to be captured whenever error occurs. The data will be recorded by black box at the moment of error occurrence and automatically saved. Thus, through Motion Studio, user can analyze cause of the problem with the aid of black box data.

Black box is deactivated by default. It is user configurable to choose whether to overwrite current data or when to overwrite the data in black box.

6.15 Full closed loop control

Full closed loop control utilizes external position sensor (i.e. grading ruler) to get an actual position feedback to implement position control. This control can compensate for lead screw tolerance and any changes due to temperature.

Parameters setting needs to make sure a smooth axis motion profile. No overtravel or abnormal noise at stopping.

1. Set external encoder

External encoder type can be set accordingly in Pr0.31. At the moment, only ABZ incremental encoder is supported.

Parameter	Label	Range	Description
Pr0.31	External	0~3	=0: ABZ incremental encoder
	encoder type		=1: Communication incremental encoder
			=2: Communication absolute incremental
			encoder (Tamagawa protocol)
			=3: BISS-C

2. Set direction of external encoder

Please make sure the direction of the external encoder is the same as the motor encoder to prevent motor runaway.

- a) Enter position JOG mode. Jog the motor in the same direction at low velocity. Monitor if the feedback value of d21 absolute encoder single turn position and d21_1 external encoder are changing in the same trend. If they are not the same, inverse the setting of Pr0.32.
- b) The feedback value of d21 and d21_1 can be verified by pushing the axis and monitoring the trend of the changes. Please make sure the servo axis is disabled.
- c) Use trial run to set up a reciprocating motion. Max velocity > 200rpm. If d49 = 1 after several cycles of motion, set Pr0.32 to 1; d48 External encoder feedback pulse count per revolution.

3. Set external encoder feedback pulse count

When Pr0.37 = 0, set external encoder feedback pulse count per revolution in Pr0.36. If the lead size of lead screw and encoder accuracy are known, please calculate using the formula below and enter the result into Pr0.36.

$$Pr0.36 = \frac{Lead \ size \ of \ lead \ screw \ (mm)}{Encoder \ accuracy \ (\frac{\mu m}{pulse})}$$

23-bit encoder resolution = 8388608 pulses

Please make sure the parameters are set correctly to avoid excessive position deviation especially after long range motion. This may trigger excessive hybrid control deviation error alarm.

Parameter	Label	Range	Description				
Pr0.35	External encoder	0~2 ²³	To set external encoder frequency divider				
	frequency divider		numerator				
	numerator		When Pr0.35 = 0, numerator = resolution of				
			encoder				
Pr0.36	Pr0.36 External encoder		To set external encoder frequency divider				
	frequency divider		denominator				
	denominator						
Pr0.37	External encoder	0~2147483648	When Pr0.37 = 0, Pr0.36 set value = external				
	feedback pulse count		encoder feedback pulse count per revolution.				
	per revolution						

4. Set alarm threshold

- Excessive hybrid deviation (Pr0.33)
 To set alarm threshold value for the position deviation between motor actual position and external encoder actual position. Er191 might occur if position deviation exceeds alarm threshold value.
- Clear hybrid control deviation (Pr0.34)
 Use to set the condition to clear hybrid control deviation (Only in full closed loop control mode)

Set value	Description
[0]	OFF
1~100	Revolution count to clear hybrid control deviation

5. Set encoder feedback mode

Set Pr0.30 = 1 to enable external encoder feedback, this is to activate full closed loop control. Pr0.01 needs to be set to 1 to enable this function. Please restart driver after modifying this parameter.

Parameter	Label	Range	Description
Pr0.30	Encoder feedback	0~2	=0: Motor encoder
	mode		=1: External encoder (Full closed loop control)
			=2: Reserved

6.16 Multiturn absolute encoder

Multiturn absolute encoder records the position and the revolution counts of the motor. When driver is powered-off, multiturn absolute encoder will backed up the data using battery and after powering on, the data will be used to calculated absolute mechanical position and there is no need for a mechanical homing process. Use widely in robotic arms and CNC machines.

If it is the first time using the encoder, please home the mechanical axis and initialize the absolute position of the encoder to zero. Set up a homing point and only home when there is an alarm. Please stop the axis before reading any position data to prevent inaccuracy.

6.16.1 Parameters setting

	Name	Absolute	Absolute Encoder settings			PP			НМ	CS P		
Pr0.15	Range	0~3276 7	Unit	-	Default	0	Index 2015h					l
	Activation	Immediat	Immediate									

0: Incremental mode:

Used as an incremental encoder. Doesn't retain position data on power off. Unlimited travel distance.

1: Multiturn linear mode:

Used as a multiturn absolute encoder. Retrain position data on power off. For applications with fixed travel distance and no multiturn data overflow.

2: Multiturn rotary mode:

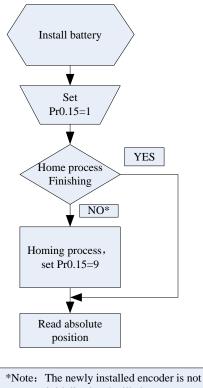
Used as a multiturn absolute encoder. Retrain position data on power off. Actual data feedback in between 0-(Pr6.63). Unlimited travel distance.

Used when travel distance is within 1 revolution of the encoder. Data overflow will trigger alarm.

- **5:** Clear multiturn alarm and activate multiturn absolute function. Will switch to multiturn mode once alarm cleared, if remains at 5 after 3s, please solve according to Er153.
- **9:** Clear multiturn position, reset multiturn alarm and activate multiturn absolute function. Will switch to multiturn mode once alarm cleared, if remains at 9 after 3s, please solve according to Er153. Please disable axis before setting to 9 and home the axis before using.

6.16.2 Read absolute position

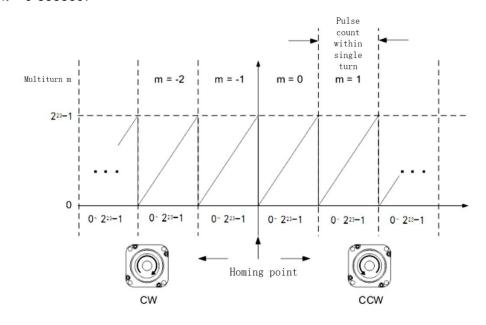
1、Steps:


First, select a motor with multiturn absolute encoder, install battery and confirm whether the driver version supports the specific motor;

Set Pr0.15 = 1. If it is the first time of installation, Err153 will occur because battery is newly installed and position data is invalid. Please home the axis and initialize the absolute position of the encoder to zero.

When absolute homing point is set and there is no fault with the battery, the alarm will be cleared

Finally, the user can read the absolute position. Position won't be lost even if the driver is powered off.



initialized and will alarm

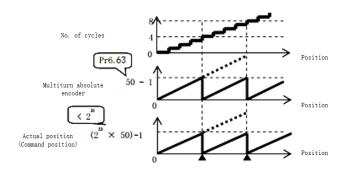
2. Read absolute position

When the rotor turns in clockwise direction, the revolution count will be negative; turns in counter clockwise direction, the count will be positive. No. of revolutions will be from -32767 to +32767. If the count number reaches +32767 in counter clockwise direction, the count will revert back to -32768, -32767 and vice versa for clockwise

As for position data, it depends on the precision of the encoder. For 17 bit = 0-131071, 23 bit = 0-8388607

Read data from 6064h object dictionary

Please read data only when the motor is fully stopped or it might cause calculation errors. Please repeat this step for at least twice to make sure the result is uniform.


Multiturn linear mode(Pr0.15 = 1)

Multiturn absolute with memory of position at power off. Use this mode when travel distance is constant, encoder multiturn data would not overflow.

In this mode, encoder data ranges from -32768~32767. If the value either of the limits, Er157 might occur. Set 9 in Pr0.15 to clear multiturn data and home the axis.

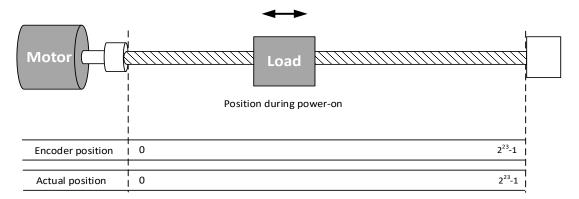
Multiturn rotational mode

For absolute encoder, multiturn rotational mode (Pr0.15 = 2, Pr6.63 set to multiturn upper limit) is added on top of incremental mode and multiturn linear mode. Actual feedback multiturn data is always between 0 - [Pr6.63 + 1], regardless of the direction of rotation. There is no limit to no. of rotation and no data overflow.

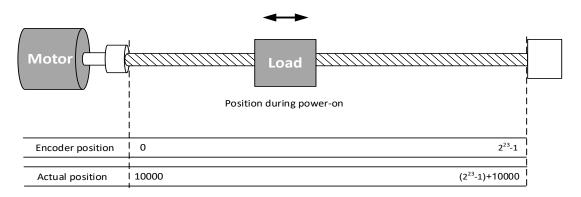
Single turn absolute mode

Use this mode when the travel distance of the axis is within a single turn of the rotor.

1. Target position input range – EtherCAT


When using 23-bit absolute encoder, under single turn absolute mode, electronic gear ratio =1:1

Homing point offset 607Ch = 0, target position range = $0 - [2^{23}-1]$

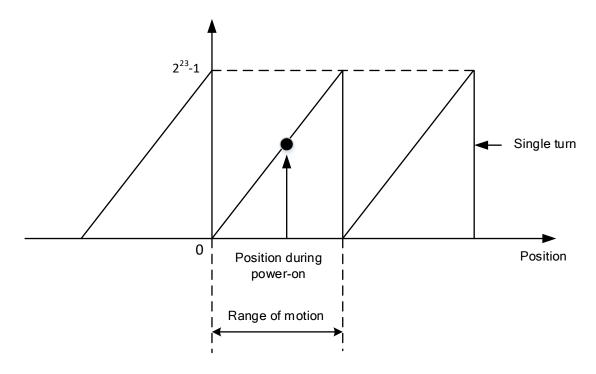

Axis is homed, target position range = $607Ch - [2^{23}-1+607Ch]$

When electronic gear ratio = 1:1, 607Ch = 0:

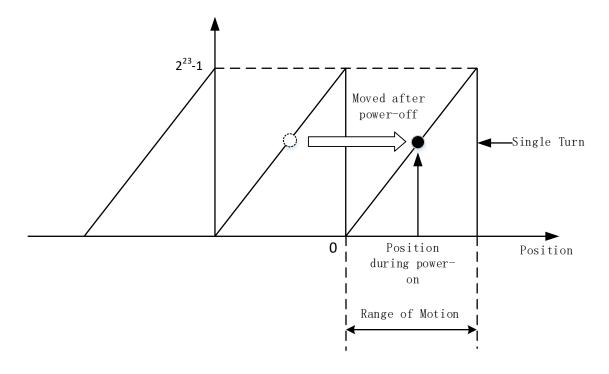
When electronic gear ratio = 1:1, 607Ch = 10000:

3. Clear multiturn position

Before clearing multiturn position, axis needs to be homed. After clearing multiturn position, revolution count = 0 but absolute position remains unchanged and Err153 alarm will be cleared.


Please make sure the homing point is within the range of 1 revolution of the rotor. Installation and setup of the homing point can be set with the use of auxiliary function D21 on the front panel.

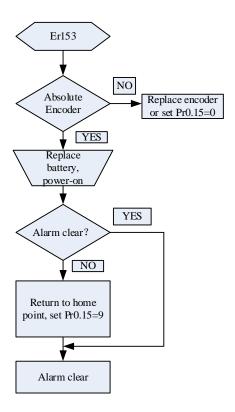
By setting Pr0.15 to 9, multiturn position will be cleared.


Please take notice of motor position during power on. Range of motion of a motor depends on the position of the motor during power on (23-bit absolute encoder as example).

If the motor position is as shown below during power on. The range of motion of the motor is within the range of a single turn of the motor from motor position during power on.

If power is turned off at position as shown below and power on when motor reaches the position below. Motor range of motion changes as shown below.

6.16.3 Absolute Encoder Related Alarm


The alarm can determine if absolute value encoder is valid. If battery power is low, not a motor with absolute encoder, encoder error etc. occurs, user can find out about the error from alarm output or on the front panel. Controller will stop any operation until alarm is cleared.

Alarm output:

Err153 will be shown on front panel or by I/O ALM signal and from controller. Err153 might occur,

- (1) If absolute encoder is used for the first time and due to installation of new batteries Axis needs to be homed and multiturn data needs to be cleared.
 - (2) If battery voltage is lower than 3.2v. Replace battery and restart the motor.
- (3) If battery voltage is lower than 2.5v or battery power was cut off. Replacing the battery won't clear the alarm. Axis needs to be homed and multiturn data needs to be cleared.

4. Alarm processing flow chart

6.16.6 Battery kit

In multiturn absolute mode, Er153 might occur upon first time installation. Pr0.15 needs to be set to 0 to reset error and clear multiturn data.

When battery supply voltage < 3.0V, ArA03 might occur. Change battery as per steps below:

- 1. Power on driver (Make sure axis is disabled)
- 2. Change battery
- Servo drive will reset warning automatically.

6.17 Probe

Motor feedback position latching function can be realized through input signal with probe function. EL8-EC supports up to 2 inputs with probe function and can be used simultaneously, to record the position information corresponding to probe signal rising and falling edge. Probe 1 signal comes from CN1 terminal pin 1 and 5 differential signal. Probe 2 signal comes from CN1 terminal pin 2-6 differential signal.

Pr0.07	Name	Probe signal settings/Colinput mode	mmand p		Mode					F
	Range	0 ~ 3	Unit	_	Default	3	Index		2007h	
	Activation	After restart	:							

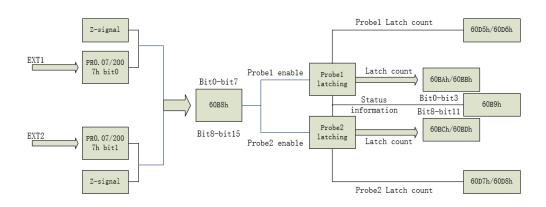
Probe signal polarity settings take effect when Pr0.01 = 9

Set value	Details			
0 Probe 1 & 2 polarity inversion				
1 Probe 2 polarity inversion				
2	Probe 1 polarity inversion			
3 No polarity inversion for probe 1 & 2				

If Pr0.01 ≠ 9, Pr0.07 = Command pulse input mode settings.

Command pulse input

Command Polarity inversion (Pr0.06)	Command pulse input mode settings (Pr0.07)	Command Pulse Mode	Positive signal	Negative signal			
	0 or 2	90°phase difference 2 phase pulse (Phase A+ Phase B)	A ti ti	t1 t1			
[0]	1	CW pulse sequence + CCW pulse sequence	t2 t2				
	[3]	Pulse sequence + Directional symbol	t4 t5 t6 t6 t6				


			Oser mandat of LLO-LC	1 AC Servo	
		90°phase			
	0	difference	A tl tl	tl tl	
	or	2 phase pulse	В		
	2	(Phase A+Phase		tì tì	
		B)			
		CW pulse			
1		sequence	□ □ □t3		
	1	+	t2_t2		
		CCW pulse		t2 t2	
		sequence			
		Pulse sequence			
	3	+	t4 t5	t4 t5 H"	
		Directional symbol	t6 t6	t6 t6	

Command pulse input signal max. frequency and min. duration needed

Command nul	ao input interfece	Max.	Min. duration needed (µs)							
Command pulse input interface		Frequency	t1	t2	t3	t4	t5	t6		
Pulse Differential drive		500 kHz	2	1	1	1	1	1		
sequence interface	Open collector	200 kHz	5	2.5	2.5	2.5	2.5	2.5		

Please set >0.1µs for the duration between rising and falling edge of command pulse input signal.

6.17.1 Probe function

When using EXT1 or EXT2 as probe, please set as following:

- a) Set polarity of EXT 1 or EXT 2 as probe. Set the level polarity of the probes using 0x2007 / Pr0.07. Bit 0 for EXT1 signal, bit 1 for EXT2 signal
- b) Probe function is set through 0x60B8 (Bit 0-7 is for probe 1, bit8-15 is for probe 2). Functions including activation trigger signal selection, triggering mode and triggering

¹ revolution with 2500 pulses 2-phase pulse input when Pr0.07=0 or 2, Pr0.08 = 10000;

¹ revolution with 10000 pulses 1-phase pulse input when Pr0.07=1 or 3, Pr0.08 = 10000

signal edge.

Please take note:

(i) Triggering mode: Single trigger, rising signal edge = valid; triggering mode:

Continuous trigger, rising and falling edge = valid

- (ii) After activation, trigger signal selection, triggering signal edge settings, counter will be reset and 0x60B9 status will change as well.
- (iii) Probe signal level is shown in 60FD: EXT1 -> bit 26, EXT2 -> bit 27.

Related Objects

Index	Sub Index	Label	Access	Data Type	Units	Range	Default
2007h	00h	Probe 1 polarity setting	RW	Uint16		0~0xFFFF	1
2007h	01h	Probe 2 polarity setting	RW	Uint16		0~0xFFFF	1
60B8h	00h	Probe control word	RW	Uint16		0~65535	0
60B9h	00h	Probe status word	RO	Uint16		0~65535	0
60BAh	00h	Probe 1or Z-signal rising	RO	int32	Command	-2147483648	0
OUDAII	OON	edge latching position	KO	111132	unit	~2147483647	U
60BBh	00h	Probe 1 or Z-signal falling	RO	int32	Command	-2147483648	0
OUDDII	UUII	edge latching position	KO	111132	unit	~2147483647	U
60BCh	00h	Probe 2 or Z-signal rising	RO	int32	Command	-2147483648	0
OUBCII	UUII	edge latching position	NO	111132	unit	~2147483647	U
60BDh	00h	Probe 2 or Z-signal falling	RO	int32	Command	-2147483648	0
OODDII	0011	edge latching position	RO	1111.02	unit	~2147483647	U
60D5h	00h	Probe 1 or Z-signal rising	RO	Uint32		0~429496729	0
000511	UUII	edge counter	KO	UIIII32		6	U
60D6h	00h	Probe 1 or Z-signal falling	RO	Uint32		0~429496729	0
OODON	0011	edge counter	RO	Ollitoz		6	U
60D7h	00h	Probe 2 or Z-signal rising	RO	Uint32		0~429496729	0
ווזעטט	UUII	edge counter	NO.	UIIIISZ		6	U
60D8h	00h	Probe 2 or Z-signal falling	RO	Uint32		0~429496729	0
300011	UUII	edge counter	I.O	UIIIU		6	U

6.17.2 Signal Input of EXT1 and EXT2

EXT1: Pin1 and Pin5 of CN1 terminal EXT2: Pin2 and Pin6 of CN1 terminal

6.17.3 Probe Control Word 60B8h

Bit	Definition	Details					
0	Probe 1 enable 0Disable						
		1Enable					
1	Probe 1 mode	0Single trigger mode					
	Probe i mode	1Continuous trigger mode					

		obel mandat of 220 20 1 7to believe
2	Probe 1 trigger signal selection	0—EXT1 signal
		1Z signal
3	Reserved	-
4	Probe 1 rising edge trigger	0Disable
		1Enable
5	Brobe 1 felling adge trigger	0Disable
	Probe 1 falling edge trigger	1Enable
6-7	Reserved	-
8	Probe 2 enable	0Disable
		1Enable
9	Probe 2 mode	0Single trigger mode
	Probe 2 mode	1Continuous trigger mode
10	Probe 2 trigger signal selection	0—EXT2 signal
		1Z signal
11	Reserved	-
12	Probe 2 rising edge trigger	0Disable
		1Enable
13	Proba 2 falling adga trigger	0Disable
	Probe 2 falling edge trigger	1Enable
14-15	Reserved	-

6.17.4 Probe Status Word 60B9h

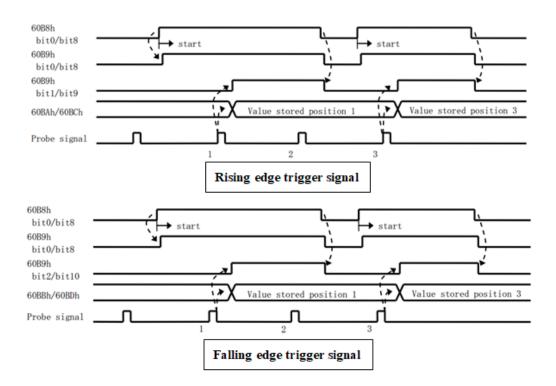
Bit	Definition	Details
0	Probe 1 enable	0Disable 1Enable
1	Probe 1 or Z-signal rising edge trigger	0 not executed 1 executed
2	Probe 1 or Z-signal falling edge trigger	0 not executed 1 executed
3-5	Reserved	-
6-7	Reserved	-
8	Probe 2 enable	0Disable 1Enable
9	Probe 2 or Z-signal rising edge trigger	0 not executed 1 executed
10	Probe 2 or Z-signal falling edge trigger	0 not executed 1 executed
11-13	Reserved	-
14-15	Reserved	-

6.17.6 Latch Position Register

Index	Details
60BAh	Probe 1 or Z-signal rising edge latch position
60BBh	Probe 1 or Z-signal falling edge latch position
60BCh	Probe 2 or Z-signal rising edge latch position
60BDh	Probe 2 or Z-signal falling edge latch position

279

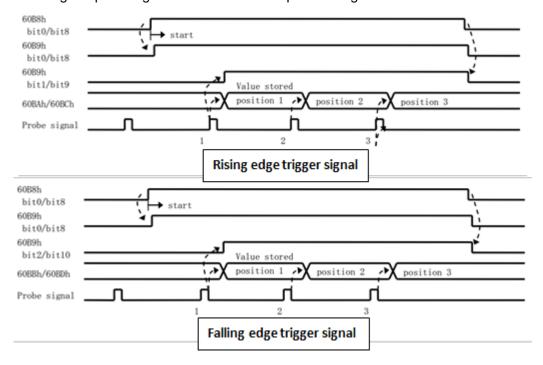
6.17.7 Latch Counter Register


Index	Details
60D5h	Probe 1 or Z-signal rising edge counter
60D6h	Probe 1 or Z-signal falling edge counter
60D7h	Probe 2 or Z-signal rising edge counter
60D8h	Probe 2 or Z-signal falling edge counter

6.17.8 Probe mode

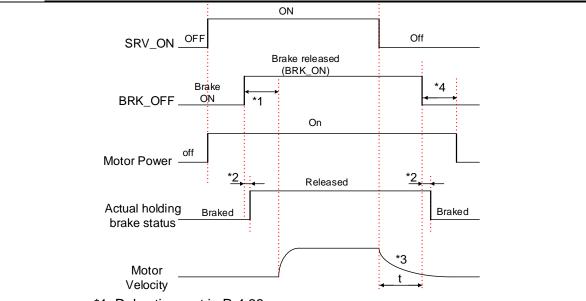
Set bit1/bit9 of 60B8h (Probe mode), 0 = Single trigger mode, 1 = Continuous trigger mode.

(1) Single trigger mode


Triggers only when the trigger signal is valid for the first time. In order to latch the position, users need to set bit0/bit8 of 60B8h to 0, then set bit0/bit8 of 60B8h to 1. The sequence diagram is as shown below:

(2) Continuous trigger mode

The data saved from signal triggering will be saved until the next trigger signal. Enabling the probe again is not needed. Sequence diagram as shown below:


6.18 Safety Functions

6.18.1 External brake deactivation output signal BRK-OFF

Please refer to Pr4.11 to set up the I/O output function parameters. When enabled and timing conditions are fulfilled, the set I/O output will deliver ON signal.

	Name	Motor power-	off delay	time	Mode					F	
Pr4.37	Range	0~3000 Unit 1ms D		Default	100	Index	Index		2437h		
	Activation	Immediate									
To set delay time for holding brake to be activated after motor power off to prevent axis											
sliding.											
	Name	Delay time for release	r holding	brake	Mode					F	
Pr4.38	Range	0~3000	Unit 1ms		Default	0	Index		2438h		
	Activation	Immediate									
	To set delay	time for holdin	ng brake	to be releas	ed after mo	otor pow	er on. N	lotor w	/ill		
	remain at cu	rrent position a	and inpu	t command i	s masked t	to allow	holding	brake	to be		
	fully released	d before motor	is set in	motion.							

- *1: Delay time set in Pr4.38
- *2: Delay time from the moment BRK_OFF signal is given until actual holding brake is released or BRK_ON signal is given until actual holding brake is activated. It is dependent on the holding brake of the motor.
- *3: Deceleration time is determined by Pr6.14 or if motor speed goes below Pr4.39, whichever comes first. BRK_OFF given after deceleration time.
- *4: Pr4.37 set time value.

Delay time from the moment SRV_ON is given until BRK_OFF switch to BRK_ON, is less than 500ms.

Pr4.39	Name	Holding brak	e activa	tion speed	Mode			F
	Range	30~3000	Unit	RPM	Default	30	Index	2439h
	Activation	Immediate						

To set the activation speed for which holding brake will be activated.

When SRV-OFF signal is given, motor decelerates, after it reaches below Pr4.39 and Pr6.14 is not yet reached, BRK_OFF is given.

BRK_OFF signal is determined by Pr6.14 or if motor speed goes below Pr4.39, whichever comes first.

Application:

- 1. After disabling axis, Pr6.14 has been reached but motor speed is still above Pr4.39, BRK_OFF signal given.
- 2. After disabling axis, Pr6.14 has not been reached but motor speed is below Pr4.39, BRK_OFF signal given.

6.18.2 Emergency stop function

Emergency stop is used when an alarm occurs or a servo prohibition signal is received when servo driver is enabled.

Method 1: Set up Pr4.43 to enable the function

	Name	Emerger	ncy stop	func	tion	М	lode							F	
Pr4.43	Range	0~1	Ur	nit	-	D	efault		0		Inde	X		2443h	
	Activation	Immedia	ite												
	0: Emergency 1: Emergency	•									m occi	ırs.			
	Name	Driver settings	prohibiti s	on in	put		Mode							F	
Pr5.04	Pr5.04 Range		Unit	t _			Defaul t	0	Index				2504h		
	Activation	Immed	iate												
	To set driver p	rohibition	input (P	OT/N	IOT): If	set	to 1, no	effe	ct o	n hon	ning m	ode			
	Set value				Exp	olar	nation								
	0	POT → P	Positive (direc	tion driv	e p	rohibited	1							
		NOT → N	Vegative	dire	ction dri	ive	prohibite	d							
	1	POT and	T and NOT invalid												
	2	Any single sided input from POT or NOT might cause Er260													
	In homing mod	de, POT/N	IOT inva	ılid, p	lease s	et c	object dic	ction	ary	5012	-04 bit	0=1	_		

Method 2: Using 605Ah object dictionary through master device to activate this function.

	Name	Servo b	raking tor	que setting	Mode							F		
Pr5.11	Range	0~500	0~500 Unit % Default 0 Index									2511h		
	Activation	Immediate												
	To set torque li	mit for se	rvo brakir	ng mode.										
	If Pr5.11 = 0, use torque limit as under normal situation.													
	Between max.	torque 60	72 and P	r5.11, actual to	rque limit	will tak	ce sr	malle	r valu	ıe.				

6.19 Other Functions

6.19.1 Functions under Position mode

Electronic gear function

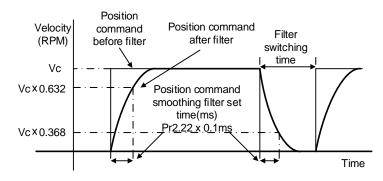
If command frequency from controller is not enough which cause the motor to not reach target rotational velocity, frequency can be increased using this function.

Pr0.08	Name	Command per revolution		ounts	Mode			F					
	Range	0~838860 8	Uni t	P-	Default	0	2008h						
	Activation	After restart	After restart										
	Pulses per revolution can be set using object dictionary 608F, 6091, 6092. However, Pr0.08 has higher priority.												

Index	Name	Enco	oder resol	ution	Unit	Encod	ler unit	St	ructure	VAR	Тур	е	Uln	t 32	
608Fh-0	Access	R 0	Mappin g	TPDO	Mode	e F		Ra	ange	1~214 74836 47	Def	ault	0		
	To set end	encoder resolution													
Index	Name		tronic gea	r ratio		Unit	r		Structu e	r VAR		Туре		Dint 32	
6091h-0 1	Access	RW	Мар	ping	RPDO	Mode F		Range	1-21 836 ²				1		
	To set ele	ctroni	c gear rati	o num	erator					•			•		
Index	Name	Electronic gear ratio denominator				Unit	r		Structu e	r VAR		Туре	9	Dint 32	
6091h-0 2	Access	RW	Мар	ping	RPDO	Mode	F		Range	1-21474 83647				1	
	To set ele	ctroni	c gear rati	o dend	ominato	r				•			•		
Index	Name	Num rotat	nber of pul	ses pe	er	Unit	Comm		Structu e	r VAR		Туре	•	Ulnt 32	
6092h-0 1	Access	RW	Map		RPDO	Mode	F		Range	1~2147 483647				10000	

If 6092h-01(Feed constant) is not equal to 608Fh(Position encoder resolution), then: Electronic gear ratio = Encoder resolution / 6092h-01

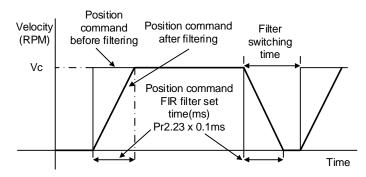
If 6092h-01(Feed constant) is equal to 608Fh(Position encoder resolution), then: Electronic gear ratio = 6091-01 / 6092h-01


Position command filter function

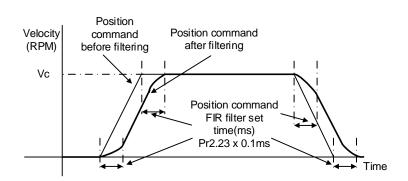
To smoothen the position command after frequency divider/multiplier

Pr2.22	Name	Position co		d	Mode	PP		H M	CS P		
	Range	0~32767	Unit	0.1ms	Default	0	Index			2222h	
	Activation	Stop axis									

To set time constant of 1 time delay filter of position command.


To set time constant of 1 time delay filter, according to target velocity Vc square wave command as show below.

Usually applied when there is rather sharp acceleration which might cause motor overshoot or undershoot. To smoothen command signal, reduces impact to machines and eliminate vibration. If Pr2.22 is set too high, overall time will be lengthened.


Pr2.23	Name	Position co	mmand F	IR filter	Mode	PP		H M	CS P		
	Range	0~10000	Unit	0.1ms	Default	0	Index			2223h	
	Activation	Disable axis									

As shown below, when target velocity Vc square wave command reaches Vc, it becomes trapezoidal wave after filtering.

As shown below, when target velocity Vc trapezoidal command reaches Vc, it becomes S wave after filtering.

Usually applied when there is rather sharp acceleration which might cause motor overshoot or undershoot. To smoothen command signal, reduces impact to machines and eliminate vibration. If Pr2.23 is set too high, overall time will be lengthened.

**Please wait for command to stop and after filter idle time to modify Pr2.23. Filter switching time = $(Pr2.23 \text{ set value } \times 0.1 \text{ms} + 0.25 \text{ms})$

In Position

Positioning completed status can be determined by output of INP signal. Under position control mode, the absolute value of position deviation counter will be ON if positioning is under the range set in Pr4.31.

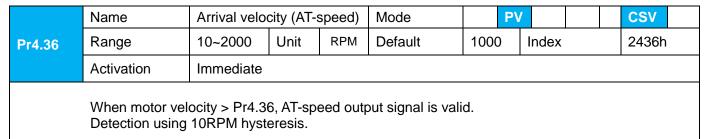
	Name	Positioning complete range			Mode	PP	H M	SP					
Pr4.31	Range	0~1000 Unit Command unit		Command unit	Default	20	Index	2431h					
	Activation	Immediate											
	To set position deviation range of INP1 positioning completed output signal.												
	Name	Positioning output sett	•	complete	Mode	PP	H M	SP					
Pr4.32	Range	0~4	Uni	it -	Default	1	Index	2432h					
	Activation	Immediate											

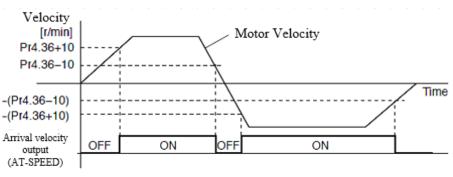
Output conditions of INP1 positioning completed output signal

Set value	Positioning completed signal
0	Signal valid when the position deviation is smaller than Pr4.31
1	Signal valid when there is no position command and position deviation is smaller than Pr4.31
2	Signal valid when there is no position command, zero-speed clamp detection (ZSP) signal is ON and the positional deviation is smaller than Pr4.31
3	Signal valid when there is no position command and position deviation is smaller than Pr4.31. Signal ON when within the time set in Pr4.33 otherwise OFF.
4	When there is no command, position detection starts after the delay time set in Pr4.33. Signal valid when there is no position command and positional deviation is smaller than Pr4.31.

	Name	INP position	ning dela	ay time	Mode	PP	H M	CSP		
Pr4.33	Range	0~15000	Unit	1ms	Default	0	Index	2433h		
	Activation	Immediate	Immediate							

To set delay time when Pr4.32 = 3


Set value	Positioning completed signal
0	Indefinite delay time, signal ON until next position command
1-15000	OFF within the time set; ON after time set. Switch OFF after receiving next position command.



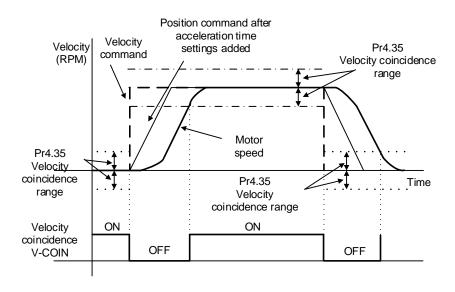
6.19.2 Functions under velocity mode

Velocity reached output signal (AT-SPEED)

AT-SPEED signal delivers after motor velocity reached arrival velocity.

Velocity coincidence output

Velocity command (before acc-/deceleration) coincides with motor velocity. If the difference between velocity command and motor velocity is within the range set in Pr4.35, it is treated as the velocity coincides.

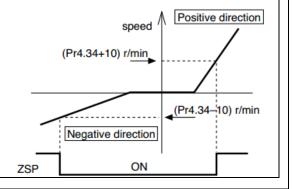

	Name	Velocity coincidence range			Mode		PV			CSV	
Pr4.35	Range	10~2000	Unit	RPM	Default	50		Index		2435h	
	Activation	Immediate									

If the difference between velocity command and motor actual speed is below Pr4.35, Velocity coincidence (V-COIN) output signal valid.

Due to 10RPM hysteresis:

Velocity coincidence output OFF -> ON timing (Pr4.35 -10) r/min Velocity coincidence output ON -> OFF timing (Pr4.35 +10) r/min

Zero speed position output


If the absolute value of the velocity feedback satisfies set conditions, corresponding output will be set to ON.

	Name	Zero speed		Mode						F	
Pr4.34	Range	1~200 0	Unit	RPM	Default	50		Index		2434h	I
	Activation										

To set threshold value for zero speed clamp detection.

Zero speed clamp detection (ZSP) output signal valid when motor speed goes under the value set in Pr4.34

- Disregard the direction of rotation, valid for both directions.
- Hysteresis of 10RPM. Please refer to diagram on the right side.

6.19.3 Functions under torque mode

Velocity limit is required under torque mode to make sure motor rotational velocity stays within the limit.

Velocity limit function

During torque control, velocity control should be within the range of velocity limit. When motor reaches velocity limit, command control will switch from torque control to command control with velocity limit.

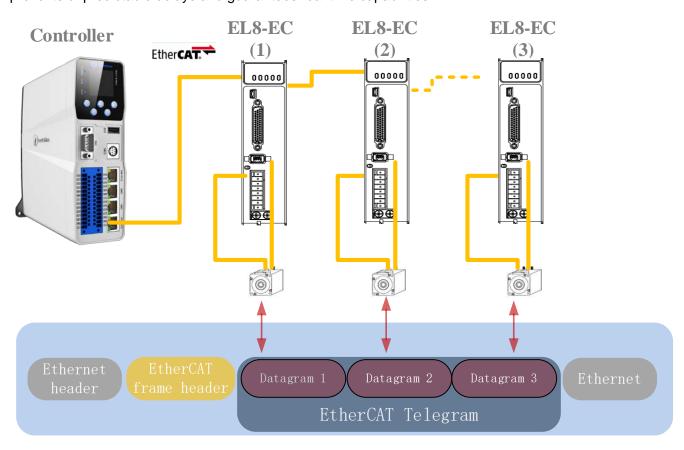
Due to gravitational or other external factors, torque command from controller might differ from the direction of rotation of the motor, velocity limit will be invalid. Please error occurs in such situation, please set Pr5.13 as stopping velocity. If velocity is over the value set in Pr5.13, Er1A0 might occur and motor will stop.

	Name	d level se	ettings	Mode							F	
Pr5.13	Range	0~10000	Unit	RPM	Defaul t	0	Index	<			2513h	
	Activation	Immediate										

If motor speed exceeds Pr5.13, Er1A0 might occur.

When Pr5.13 = 0, overspeed level = max. motor speed x 1.2

Chapter 7 EtherCAT communication


7.1 EtherCAT principle function

In comparison to Ethernet protocol which requires huge bandwidth for packets to be moved between master and clients, EtherCAT communication protocol breaks through this systemic limitation of Ethernet which requires every client to receive the whole data package from the master.

The EtherCAT master sends a telegram that passes through each node. Each EtherCAT slave device reads the data addressed to it "on the fly", and inserts its data in the frame as the frame is moving downstream. The frame is delayed only by hardware propagation delay times. The last node in a segment (or drop line) detects an open port and sends the message back to the master using Ethernet technology's full duplex feature.

The telegram's maximum effective data rate increases to over 90 %, and due to the utilization of the full duplex feature, the theoretical effective data rate is even higher than 100 Mbit/s (> 90 % of two times 100 Mbit/s).

The EtherCAT master is the only node within a segment allowed to actively send an EtherCAT frame; all other nodes merely forward frames downstream. This concept prevents unpredictable delays and guarantees real-time capabilities.

EtherCAT in standard Ethernet frame

ID number setting of EtherCAT slave station

To set up EtherCAT slave station ID number, please set Pr0.24 = 1 and set required ID number to Pr0.23.

	Name	EtherCAT	slave ID		Mode			F		
Pr0.23	Range	0~3276	0~3276 Unit		Default	2	Index	2023h		
		7								
	Activation After restart									
Set ID number of the slave station under EtherCAT mode										
	Name	Source of slave ID			Mode			F		
Pr0.24	Range	0~1 Unit —			Default	1	Index	2024h		
	Activation	After restart								
	0: Master device automatically assigns a slave address.									
	1: The slave ID = Pr0.23									

7.2 Synchronous Mode

7.2.1 Free Running Mode

In free running mode, EL8-EC processes the process data sent by the master asynchronously. It only applies to asynchronous motion mode such as homing mode, protocol position mode, etc

7.2.2 Distributed clock synchronization mode

EL8-EC adopts the synchronous mode of distributed clock as shown in figure 6.2. When the master station sends process data to the slave station, the slave station immediately reads the process data, and then waits for the synchronization signal to trigger the process data to act on the driver.

The process data must arrive at the EL8-EC drive before the time of Sync0 signal T1. The drive has completed the analysis of the process data and relevant control calculation before the arrival of Sync0 event. After receiving Sync0 event, EL8-EC immediately implements the control action which has a high synchronization performance.

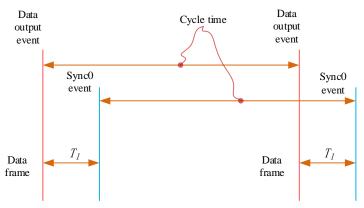


Figure 7.2 High performance synchronization mode

7.3 EtherCAT state machine

EtherCAT state machine, commonly known as "communication state machine", is mainly used to manage communication between master and slave stations. The communication function mainly includes mailbox and process data communication. The EtherCAT state machine transition relationship is shown in figure 7.3

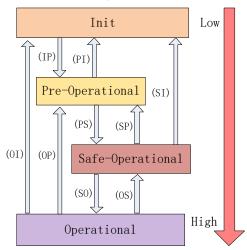


Figure 7.3 EtherCAT state machine transitions

EtherCAT state machine transitions have the following characteristics:

- 1) From initialization to operational, the conversion must be carried out strictly in the order of initializing > pre-operational > safe operational > operational, from low to high, and no grade skipping is allowed
- (2) When converting from high to low, grade skipping is allowed.
- ③ If state transition request to master station fails, slave station will send an error message to the master station.

EtherCAT 402 State Machine Communication function

State and transition	Communication function			
Init	No mailbox or process data communication is possible.			
Dro Operational	Mailbox communication is effective, no process data communication, SDO			
Pre-Operational	function is valid			
Coto Onorational	Mailbox communication and sending process data object is valid, SDO and			
Safe-Operational	TXPDO are valid			
Operational	Mailbox communication, receive and send process data object valid, SDO			
Operational	RXPDO and TXPDO valid			

7.4 CANopen over EtherCAT (CoE)

7.4.1 Network structure of EL8-EC

The structure of EL8-EC servo system network module is shown in figure 7.4

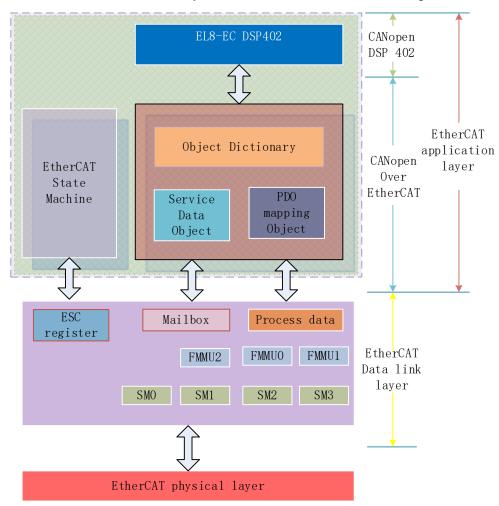


Figure 7.4 Structure of EL8-EC network module

The data link layer is mainly implemented by EtherCAT slave station controller (ESC). EL8-EC EtherCAT application layer protocol mainly includes application part (CANopen DSP402), object dictionary and communication function (red frame part), among which object dictionary and communication function can be jointly called CoE part.

Object dictionary—Bridge of communication function and application part. **Communication function**—Implementation of communication rules (SDO, PDO, etc.)

Application part—Define the specific function of the device, such as the drive, IO module.

7.4.2 Object dictionary

EtherCAT master controls the EL8-EC drive by writing and reading device state /information. To do this, the drive defines read-write parameters and read-only state values. Object dictionary is the collection of these parameters and states. The EL8-EC object dictionary contains all DSP402 and CoE related data objects in a standardized manner. It is a collection of EL8-EC parameter data structures. The EL8-EC object dictionary is the interface with which the controller communicates. EtherCAT master implements EL8-EC motion control through the interface of object dictionary.

7.4.3 Service Data Object (SDO)

The EL8-EC series supports SDO services. EtherCAT master can configure, monitor and control EL8-EC servos by using SDO to read and write EL8-EC object dictionaries. In conventional CANopen DS301 mode, SDO protocol CAN only transfer 8 bytes at a time to match the data length of CAN message. In COE enhancement mode, only the payload data is expanded without changing the protocol head: In this way, the SDO protocol uses mailboxes with larger data lengths, thus improving the transmission efficiency of big data.

7.4.4 Process Data Object (PDO)

PDO Introduction

PDO is generally used for real-time data updates. It is divided into receiving PDO (RXPDO) and sending PDO (TXPDO). The data stream direction of receiving PDO is from master station to slave station, while sending PDO is from slave station to master station The PDO function of EL8-EC supports both synchronous cycle mode and non-periodic update mode. When distributed clock synchronization mode is selected on master station, PDO will update according to the synchronization cycle. If free moving mode is selected, PDO data updates aperiodic.

PDO mapping

Through PDO mapping, the real-time transmission of mapped objects can be realized. EL8-EC supports simultaneous transmission of 2 sets of RXPDO and 2 sets of TXPDO. Each PDO object can map up to 8 object dictionary (maximum length 32 bytes). The format of PDO mapping content is shown in table 7.2

Table 7.2 Format of PDO mapping

Bit	31~16	15~8	7~0
Description	Index of mapped	Subindex of mapped	Bit length
	object	object	(Hex)
Example	6040h	00h	10h(16bit)

Table 7.3 Default PDO mapping

	Table 7.3 Default PDO mapping							
PDO Map	PDO Map	Mapping	I	Mapped Obje	ct	Description		
object index	object Sub-index	content	Index	Sub-index	Bit length	Description		
	01h	60400010h		00h	10h(16 bit)	01h		
RXPDO1	02h	607A0020h		00h	10h(16 bit)	02h		
(1600h)	03h	60B80020h		00h		03h		
RXPDO2	01h	60400010h	6040h	00h	10h(16 bit)	Control word		
(1601h)	02h	60FF0020h	60FFh	00h	20h(32 bit)	Target velocity		
(100111)	03h	60B20010h	60B2h	00h	10h(16 bit)	Torque feedforward		
RXPDO3	01h	60400010h	6040h	00h	10h(16 bit)	Control word		
(1602h)	02h	60710010h	6071h	00h	10h(16 bit)	Target torque		
(100211)	03h	60870020h	6084h	00h	20h(32 bit)	Profile deceleration		
	01h	60400010h	6040h	00h	10h(16 bit)	Control word		
	02h	60980008h	6098h	00h	08h(8 bit)	Homing method		
	03h	60990120h	6099h	01h	20h(32 bit)	High homing velocity		
RXPDO4	04h	60990220h	6099h	02h	20h(32 bit)	Low homing velocity		
(1603h)	05h	609A0020h	609Ah	00h	20h(32 bit)	Homing acceleration		
	06h	607C0020h	607Ch	00h	20h(32 bit)	Homing position offset		
	07h	60600008h	6060h	00h	08h(8 bit)	Operation mode		
	01h	603F0000h						
	02h	60410000h						
TXPDO1	03h	60610000h						
(1A00h)	04h	60640000h						
(TAOOH)	05h	60B90020h						
	06h	60BA0020h						
	07h	60FD0020h						
TXPDO2			No de	fault mapping	ı			
(1A01h)								

PDO dynamic mapping

Different from CIA DS301, CoE uses PDO specified objects (1C12h/1C13h) to configure PDO mapped objects (1600h~1603h/1A00h~1A01h) to PDO SyncManager (SyncManager 2/3). PDO specified objects are defined in table 7.4

Table 7.4 PDO specifies object definitions

Index	Sub-index	Range	Data type	Access
	00h	0~4	U8*1)	RO *2)
DVDDO	01h		U16	RW
RXPDO	02h	1600h 1602h	U16	RW
(1C12h)	03h	1600h~1603h	U16	RW
	04h		U16	RW
TVDDO	00h	0~2	U8	RO
TXPDO	01h	1000b 1001b	U16	RW
(1C13h)	02h	1A00h~1A01h	U16	RW

^{** 1)} U represents unsigned type, such as U8 for unsigned 8 bits and U16 for unsigned 16 bits

2) Access: RO = Read Only, RW = Read and Write, WO = Write Only

PDO dynamic mapping setup procedure

- B. Switch EtherCAT state machine to pre-operational, then PDO map can be configured using SDO.
- C Clear the PDO mapping object of the PDO specified object by setting 1C12-00h / 1C13-00h to 0.
- D. Invalidate the PDO mapping object by assigning 0 to the subindex 0 of 1600h~1603h /1A00h~1A01h.
- Reconfigure PDO mapping content and write the mapping object into the objects in the range of 1600-01h~1600-08h, 1601-01h~1601-08h, 1602-01h~1602-08h, 03-01h~1603-08h (RXPDO mapping content as from 1600h-01), 00-01h ~ 1A00-08h or 1A01-01h~1A01-08h (TXPDO mapping content as from 1A00h-01) according to Table 6.3
- Set the total number of PDO mapping objects by writing the number of mapping objects into 1600-00h, 1601-00h, 1602-00h, 1603-00h, 1A00-00h or 1A01-00h. The total number of PDO mapping objects without mapping content will be set to 0.
- G. Write valid PDO mapping object index to PDO specified object by writing valid RXPDO mapping object index 1600h~1603h into 1C12-01h ~ 1C12-04h and writing valid TXPDO mapping object index 1A00h, 1A01h into 1C13-01h, 1C13-02h.
- H. Set the total number PDO specified objects by writing the number of mapped objects to 1C12-00h and 1C13-00h.
- Switch EtherCAT state to Safe-Operational or above, the configured PDO mapping will be valid.

7.5 Network status display

The network connection status is determined by the LED light on CN4 and CN5 port.

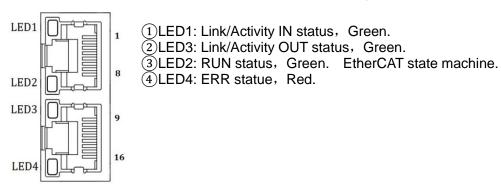
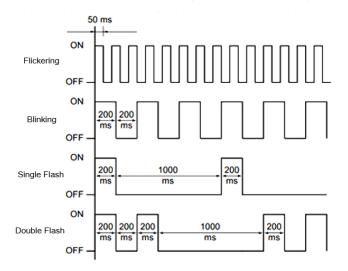
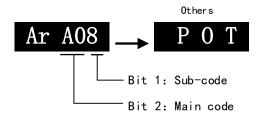



Figure 7.6 CN3 and CN4 port

Table 7.5 LED Indicator

Label	Color	Status	Description	
		(OFF)	Init	
RUN	Green	(Blinking)	Pre-Operational	
KUN		(Single flash)	Safe-Operational	
		(ON)	Operational	
		(OFF)		
ERR	Red	(Blinking)		
		(Single flash)	Poter to abouter 4.2 for more details	
EKK		(Double flash)	Refer to chapter 4.3 for more details	
		(Flickering)		
		(ON)		
		(OFF)	Physical layer link not established	
L/A IN	Green	(ON)	Physical layer link established	
		(Flickering)	Interactive data after link established	
		(OFF)	Physical layer link not established	
L/A OUT	Green	(ON)	Physical layer link established	
		(Flickering)	Interactive data after link established	

Status description of CN3 & CN4 indicator light is shown in figure 7.7

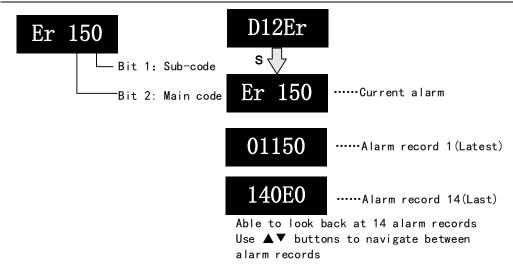


Chapter 8 Warning and Alarm

8.1 Servo drive warning

When warning occurs, driver will set protective function but **motor won't stop moving**. Error code will be displayed on the front panel.

Example of warning code:



	rning ode	Content
Main	Code	
	1	Overload warning
	2	Regeneration energy overload warning(85% of the regeneration threshold)
	3	Absolute encoder battery voltage low (<3.1V). Valid when Pr0.15 is set to 1.
	4	Change the parameter to a non-real time valid warning
	7	Low temperature warning (< 20°C)
	8	Positive limit switch valid. POT blinking on front panel
A0	9	Negative limit switch valid. NOT blinking on front panel
	Α	Positive and negative limit switch valid. PNOT blinking on front panel
	В	Current position is beyond software positive limit. SPOT blinking on front panel
	С	Current position is beyond software negative limit. NPOT blinking on front panel
	D	Current position is beyond software negative, positive limit. SPNOT blinking on front
	D	panel
	Е	Parameters reset to factory default. Restart needed

8.2 Servo drive alarm

When alarm occurs, driver will set protective function and **motor stops moving**. Error code will be displayed on the front panel. Alarm history record can also be viewed in data monitoring mode, with the alarm log sub-menu displaying "d12Er".

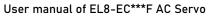
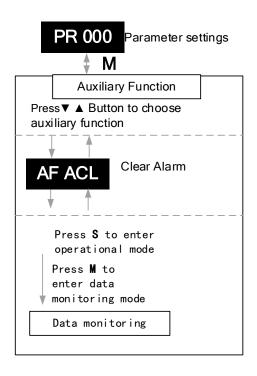


Table 8.1 Error Code List

Erro	r code	Comtont		Attribu	ıte
Main	Sub	Content		Туре	Clearable
09	0~F	FPGA communication error	•	2	
	0~1	Circuit current detection error	•	2	
	2,4	Analog input error	•	2	
0A	3	Motor power cable not connected	•	1	
	5	DC bus error	•	2	
	6	Temperature measuring error	•	2	
0b	0	Control circuit power supply voltage too low		2	
db	1	Control circuit power supply voltage too high		2	•
0с	0	DC bus overvoltage	•	1	•
	0	DC bus undervoltage	•	1	•
0d	1	Single phasing of main power supply	•	2	
	2	No main power supply detected		2	
	0	Overcurrent	•	1	
0E	1	Intelligent Power Module (IPM) overcurrent	•	1	
UE	2	Power output to motor shorted to ground	•	1	
	4	Phase overcurrent	•	1	
0F	0	Driver overheated	•	2	
	0	Motor overloaded	•	1	•
10	1	Driver overloaded	•	1	•
	2	Motor rotor blocked	•	1	•
	0	Regenerative resistor overvoltage	•	2	
12	1	Holding brake error	•	1	
	2	Regenerative resistor value too low	•	2	
15	0	Encoder disconnected	•	1	
15	1	Encoder communication error	•	1	

		User man	iual OI EL	.0-EC F	AC Sel VU
	2	Encoder initial position error	•	1	
-	3	Multiturn encoder error	•	2	
=	4	Encoder parameter settings error	•	2	
-	5	Encoder data overflow	•	2	•
-	6	Encoder overheated	•	2	•
-	7	Encoder counter error	•	2	•
4-	0	Encoder data error	•	1	
17	1	Encoder parameter initialization error	•	1	
4.0	0	Excessive position deviation	•	2	•
18	1	Excessive velocity deviation	•	2	•
1.0	0	Motor vibration too strong	•	2	•
19	1	Excessive hybrid position deviation	•	1	•
_	0	Overspeed	•	2	•
1A	1	Velocity out of control	•	1	•
	0	Bus input signal dithering	•	2	•
-	1	Incorrect electronic gear ratio	•	2	•
1b		External encoder frequency divider	•	1	<u> </u>
	3	parameter error	•		
-	4	Excessive synchronous position command	•	2	•
	0	Both STO failed	•	1	
-	1	1 st STO failed	•	1	
,	2	2 nd STO failed	•	1	
1c	3	STO power supply 3.3v anomaly		2	
=	4	STO power supply 5.0v anomaly		2	
- -	5~8	Faulty STO internal optocoupler, inverter		2	
	0	I/O input interface assignment error	•	2	
	1	I/O input interface function assignment error	•	2	
21		I/O output interface function assignment		2	
	2	error	•		
		CRC correction during EEPROM parameter		2	
	0	saving			
-	1	I2C communication status error		2	
24	2	Error r/w alarm history record		2	
-	3	Error r/w diagnostic data		2	
-	4	Error r/w 402 parameters		2	
=	5	Error r/w communication parameters		2	
	0	Gantry deviation error			
25	1	Gantry communication error			
00		Positive/Negative position limit triggered		2	
26	0	under non-homing mode	•		•
	0	Analog 1 input overrun limit	•	2	•
27	1	Analog 2 input overrun limit	•	2	•
- -	2	Analog 3 input overrun limit	•	2	•

		oser mar	==		710 00.10
	0	Control mode not match under full closed		1	
29	0	loop mode	•		
29	1	Encoder mode not match under full closed		1	
	-	loop mode	•		
	0	External ABZ encoder disconnected	•	1	
55	1	External ABZ encoder Phase A disconnected	•	1	
55	2	External ABZ encoder Phase B disconnected	•	1	
	3	External ABZ encoder Phase Z disconnected	•	1	
57	0	Forced alarm input valid(E-stop)	•	2	•
5F	0	Motor model no. detection error		2	
3F	1	Driver power module detection error		2	
60	0	Main loop interrupted timeout		2	
60	1	Velocity loop interrupted timeout		2	
70	0	Encryption error		2	
89	0	Homing error		2	•
92	0	External encoder parameter initialization	_	1	
92	0	error	•		



Save: Save error messages to alarm history.

Type: The type 1 and type 2 fault stop mode can be set via Pr5.10 [Sequence at alarm].

Clearable: Clearable alarm by operating the front panel and use auxiliary function

AFACL as below. Besides clearable alarms, please first solve the error and restart the servo driver to clear alarm.

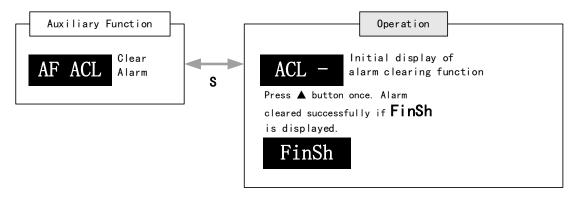


Table 8.2 Alarm and 603F correspondence

Fran Codo	603F correspondence			
Error Code	1001	603Fh	ETG	Alarm Description
Display	h 0v04	0.2150	Code	Dhaga A sirguit current detection error
Er 0A0	0x04	0x3150		Phase A circuit current detection error
Er 0A1	0x04	0x3151		Phase B circuit current detection error
Er 0A3	0x04	0x3153		Motor power cable not connected
Er 0b0	0.04			Control circuit power supply voltage too low
Er 0b1	0x04	0x3206		Control power supply voltage too high
Er 0C0	0x04	0x3211		DC bus overvoltage
Er 0d0	0x04	0x3221		DC bus undervoltage
Er 0d1	0x04	0x3130		Single phasing of main power supply
Er 0d2	0x04	0x3222		No main power supply detected
Er 0E0	0x02	0x2211		Overcurrent
Er 0E1	0x02	0x2212		Intelligent Power Module (IPM) overcurrent
Er 0E2	0x02	0x2218		Power output to motor shorted to ground
Er 0E4	0x02	0x2230		Phase overcurrent
Er 0f0	0x08	0x4210		Driver overheated
Er 100	0x02	0x8311		Motor overloaded
Er 101	0x02	0x8310		Driver overloaded
Er 102	0x02	0x8301		Motor rotor blocked
Er 120	0x80	0x7701		Regenerative resistor overvoltage
Er 121	0x80	0x7702		Holding brake error
Er 122	0x80	0x7703		Regenerative resistor value too low
Er 150	0x80	0x7321		Encoder disconnected
Er 151	0x80	0x7322		Encoder communication error
Er 152	0x80	0x7323		Encoder initial position error
Er 153/Er 154	0x80	0x7325		Multiturn encoder error / Encoder parameter settings error
Er 155	0x80	0x7326		Encoder data overflow
Er 156	1	0x7320 0x7327		Encoder data overnow Encoder overheated
	0x80			
Er 157	0x80	0x7328		Encoder count error
Er 170	0x80	0x7324		Encoder data error
Er 171	0x80	0x7325		Encoder parameter initialization error
Er 180	0x20	0x 8611		Excessive position deviation
Er 181				Excessive velocity deviation
Er 190	0x20	0x 8401		Motor vibration too strong
Er 1A0	0x20	0x 8402		Overspeed
Er 1A1	0x20	0x 8403		Velocity out of control
Er 1b0	0x20	0x		Bus input signal dithering

				User manual of EL8-EU"""F AU Servo
		8612		
C. 4b4	020	0x		Incorrect electronic gear ratio
Er 1b1	0x20	8503		
Er 1c0	0x02	8313		Both STO failed
Er 1c1	0x02	8313		1 st STO failed
Er 1c2	0x02	8313		2 nd STO failed
Er 210	0x80	0x6321		I/O input interface assignment error
Er 211	0x80	0x6322		I/O input interface function assignment error
Er 212	0x80	0x6323		I/O output interface function assignment error
Er 240	0x80	0x5530		EEPROM parameters initialization error
Er 241	0x80	0x5531		EEPROM hardware error
Er 242	0x80	0x5532		Error saving alarm history record
Er 243	0x80	0x5533		Error occurred when saving vendor parameters
Er 244	0x80	0x5534		Error occurred when saving communication parameters
Er 245	0x80	0x5535		Error occurred when saving parameter 402
Er 246	0x80	0x5536		Data saving error during power-off
F* 000	0,,00	07220		Positive/Negative position limit triggered under
Er 260	0x80	0x7329		non-homing mode
Er 270				Analog 1 input overrun limit
Er 271				Analog 2 input overrun limit
Er 280	0x80	0x7201		Output pulse frequency too high
Er 570	0x80	0x5441		Forced alarm input valid
Er 5f0	0x80	0x7122		Motor model no. detection error
Er 5f1	0x80	0x1100		Driver power module detection error
Er 600	0x80	0x6204		Main loop interrupted timeout
Er 601	0x80	0x6204		Velocity loop interrupted timeout
Er 700	0x80	0x7001		Encryption error
Er 73A	0x10	0x873A		SyncManager2 lost
Er 73b	0x10	0x873B		SYNC0 lost
Er 73c	0x10	0x873 C		Excessive Distributed Clock error
Er 801	0x10	0x8201	0x0001	Unknown communication error
Er 802	0x80	0x5510	0x0002	Memory overflow
Er 803	0x80	0x5511		RAM out of bound
Er 805	0x80	0x6202		FOE firmware upgrade failed
Er 806	0x80	0x6201		Saved ESI file does not match driver firmware
Er 811	0x10	0xA001	0x0011	Invalid EtherCAT transition request
Er 010	0.40	0×4000	0v0040	Unknown EtherCAT state machine transition
Er 812	0x10	0xA002	0x0012	request
Er 813	0x10	0x8213	0x0013	Protection request from boot state
Er 814	0x80	0x6203		Invalid firmware

				Osel Illalidat Of ELO-EC T AC Servo
Er 815	0x10	0x8215	0x0015	Invalid mailbox configuration under boot state
Er 816	0x10	0x8216	0x0016	Pre-Op status is invalid for the mailbox configuration
Er 817	0x10	0x8217		Invalid SyncManager configuration
Er 818	0x10	0x8211		No valid input data
Er 819	0x10	0x8212		No valid output data
Er 81A	0x10	0xFF02	0x871 A	Synchronization error
Er 81b	0x10	0x821B	0x001 B	SyncManager2 watchdog timer timeout
Er 81C	0x10	0x821 C	0x001 C	Invalid SyncManager type
Er 81d	0x10	0x821 D	0x001 D	Invalid output configuration
Er 81E	0x10	0x821E	0x001 E	Invalid input configuration
Er 81f	0x10	0x821F		Watchdog configuration invalid
Er 821	0x10	0xA003	0x0021	Waiting for EtherCAT state machine Init state
Er 822	0x10	0xA004	0x0022	Waiting for the EtherCAT state machine Pre-Op state
Er 823	0x10	0xA005	0x0023	Waiting for master device for Safe-Op request
Er 824	0x10	0x8224	0x0024	Invalid process data input mapping
Er 825	0x10	0x8225	0x0025	RPDO mapping invalid (length, parameter not present, no this property)
Er 827	0x10	0x8227		Free running mode is not supported
Er 828	0x10	0x8228		Sync mode not supported
Er 82b	0x10	0x8210	0x002 B	Invalid inputs and outputs
Er 82C	0x10	0x872 C	0x002 C	Fatal synchronization error
Er 82d	0x10	0x872 D	0x002 D	No synchronization error
Er 82E	0x10	0x872E	0x002 E	Synchronization cycle time is too short
Er 830	0x10	0x8730	0x0030	Invalid Distributed Clock synchronization settings
Er 832	0x10	0x8732	0x0032	Distribution Clock phase-locked loop failure
Er 833	0x10	0x8733		DC sync IO error
Er 834	0x10	0x8734		DC sync timeout
Er 835	0x10	0x8735		Distribution Clock cycle time is invalid
Er 836	0x10	0x8736	0x0036	Invalid Distribution Clock synchronization cycle time
Er 850	0x80	0x5550	0x0050	EEPROM is inaccessible

User manual of EL8-EC***F AC Servo

Er 851	0x80	0x5551	0x0051	EEPROM error
Er 852	0x80	0x5552	0x0052	Hardware is not ready
Er 860	0x80	0xFF01		EtherCAT frame lost per unit time exceeds limit
Er 870	0x80	0x5201		Driver can't be enabled under current control mode
Er 890	0x80	0x8614		Homing error

8.3 Alarm Handling

**When error occurs, please solve accordingly. Then, restart. If the solutions described don't work, please consider replacing the driver.

Error	Main	Sub	Display: "Er 090""Er 09F"		
code	code 09 0~F Cor		Content: FPGA communication error		
Cause			Diagnosis	Solution	
L1, L2 terminal voltage too		oltage too	Verify L1, L2 terminal	Make sure L1, L2 terminal voltage is	
low			voltage	within recommended range	

Error	Main	Sub	Display: "Er 0A0""Er 0A1"			
code	0A	0~1	Content: Circuit current detection error			
Cause			Diagnosis		Solution	
Motor power cable wiring error			Verify motor power cable wiring		Make sure U,V,W terminal wired properly	
Main power supply undervoltage			Verify 111213 terminal		Increase main power supply voltage	

Error	Main	Sub	Display: "Er 0A2" / "Er 0A4" Content: Analog input error	
code	AO	2/4		
Cause			Diagnosis Solution	
Analog i	Analog input wiring error		Verify analog input wiring	Make sure of analog input wiring connection

Error	Main	Sub	Display: "Er 0A3"			
code	0A	3	Content: Motor power cable not connected			
Cause			Diagnosis	Solution		
Motor po	Motor power cable not		Verify motor power cable	Measure resistance values		
connect	ed		wiring	between U, V, W terminals, make		
				sure the values are almost equal. If		
				not, might be due to damaged motor		
				or motor winding open circuit.		
Motor fa	ıult		/	Replace motor		

Error	Main	Sub	Display: "Er 0A5"		
code	0A	5	Content: DC Bus error		
Cause			Diagnosis	Solution	
L1, L2 terminal voltage too low		oltage too	Verify L1, L2 terminal voltage. Check if power on indicator light on servo drive is on and d27 DC bus voltage.	Make sure L1, L2 terminal voltage is within recommended range	

Error	Main	Sub	Display: "Er 0A6"	
code	AO	6	Content: Temperature measuring error	
Cause	Cause		Diagnosis Solution	
L1, L2 terminal voltage too		oltage too	Verify L1, L2 terminal	Make sure L1, L2 terminal voltage is
low	. ,		voltage	within recommended range

Error	Main	Sub	Display: "Er 0b0"			
code	0b	0	Content: Control circuit power supply voltage too low			
Cause			Diagnosis	Solution		
Control circuit power supply voltage too low			Verify L1C, L2C terminal voltage; check if wiring connection is tight	Increase L1C, L2C terminal voltage; Tighten L1C, L2C terminal connection		
	Power supply under capacity		1	Increase power supply capacity for L1C, L2C terminals		

Error	Main	Sub	Display: "Er 0b1"		
code	0b	1	Content: Control circuit power supply abnormal		
Cause	Cause		Diagnosis	Solution	
USB po	USB power supply too low		Verify if USB cable is properly	Replace USB Type-C cable	
			connected and not damaged.		

Error	Main	Sub	Display: "Er 0c0"			
code	0с	0	Content: DC bus overvoltage			
Cause			Diagnosis	Solution		
Main po	wer sup	ply	Varify I 1 I 2 I 2 tarminal valtage	Decrease main power supply		
overvolt	age		Verify L1,L2,L3 terminal voltage	voltage		
Acceleratime too		celeration	Verify if the time is actually too short	Increase the duration time or change to a regenerative resistor with higher resistance.		
Regenerative brake parameter anomaly			Verify Pr7.32/Pr7.33	Modify vent overload parameter		
Inner br damage		uit	/	Replace driver		

Error	Main	Sub	Display: "Er 0d0"		
code	0d	0	Content: DC bus undervoltage		
Cause			Diagnosis Solution		
Main po	wer supp	ly	Verify L1,L2,L3 terminal voltage	Increase main power supply	
undervo	ltage		Verily L1,L2,L3 terminal voltage	voltage	
L1C, L2	C connec	ted	Control circuit power on before	Please disconnect the USB cable	
when USB cable is			driver initialization. Alarm might	before powering on control circuit.	
connect	ed		occur.	before powering on control circuit.	

Error	Main	Sub	Display: "Er 0d1"				
code	0d	1	Content: Single phasing of main power supply				
Cause			Diagnosis	Solution			
Main po	wer supp	ly	Verify L1,L2,L3 terminal voltage	Increase main power supply			
undervo	undervoltage		verily L1,L2,L3 terminal voltage	voltage			
Main power supply			Loose connection of L1, L2, L3	Secure connections			
wiring e	rror		Loose connection of £1, £2, £3	Secure connections			

Error	Main	Sub	Display: "Er 0d2"	
code	code 0d 2 Content: No main power supply detected		etected	
Cause			Diagnosis	Solution
				1. Increase main power supply
No main power supply			Verify L1,L2,L3 terminal voltage	voltage
, ,,,				2. Secure connections

Error	Main	Sub	Display: "Er 0E0"	
code	code 0E 0		Content: Overcurrent	
Cause			Diagnosis	Solution
.			Verify if there is short circuit	1. Make sure there is no circuit.
short cir	ower outp	out	between UVW terminals, or	2. Make sure motor is not
SHOIT CII	SHOIT CITCUIT		shorted to PG.	damaged
Motor w	iring erro	r	Verify motor wiring	Reconnect motor wiring
IGBT mo	IGBT module short		Disconnect motor output cable. Then, enable servo driver to check for overcurrent	Replace driver
	Control parameter		Verify if parameter exceeds	Set parameter within
anomaly			recommended range	recommended range.
Control	command	t	Verify if command motion is too	Modify control command;
anomaly	/		acute	use filter

Error	Main	Sub	Display: "Er 0E1"	
code	0E	1	Content: Intelligent Power Module	e (IPM) overcurrent
Cause			Diagnosis	Solution
Driver power output short circuit		out	Verify if there is short circuit between UVW terminals, or shorted to PG.	Make sure there is no circuit. Make sure motor is not damaged
Motor w	Motor wiring error		Verify motor wiring	Reconnect motor wiring
IGBT mo	IGBT module short circuit		Disconnect motor output cable. Then, enable servo driver to check for overcurrent	Replace driver
IGBT module undervoltage			/	Replace driver
Control parameter		r	Verify if parameter exceeds	Set parameter within
	anomaly		recommended range	recommended range.
Control	command /	t	Verify if command motion is too acute	Modify control command; use filter

Error	Main	Sub	Display: "Er 0E2"		
code	0E	2	Content: Power output to motor sh	norted to ground	
Cause			Diagnosis	Solution	
Driver U, V, W terminals shorted to ground			Disconnect motor power cable and check for short circuit between driver UVW and PE	Reconnect wiring. Change motor power cable.	
Motor shorted to ground			Connect motor power cable to driver power output. Verify if resistance value of UVW to PE is in the range of MegaOhm (MΩ)	Replace motor	

Error	Main	Sub	Display: "Er 0E4"		
code	0E	2	Content: Phase overcurrent		
Cause			Diagnosis	Solution	
	, V, W tei to ground		Disconnect motor power cable and check for short circuit between driver UVW and PE	Reconnect wiring. Change motor power cable.	
Motor shorted to ground			Connect motor power cable to driver power output. Verify if resistance value of UVW to PE is equal and if there is short circuit	Replace motor	

			oser manual of 220 20 1 760 serve		
Error	Main	Sub	Display: "Er 0F0"		
code	0F	0	Content: Driver overheated		
Cause			Diagnosis	Solution	
Temperat	Temperature of power		Measure the temperature of 1. Improve cooling condition. Pleas		
module e	xceeded	d upper	driver radiator.	check installation guide;	
limit				2. Replace driver and motor with	
				higher power rating;	
				3. Increase duration time for acceleration	
				and deceleration;	
				4. Decrease load	

Error Main		Sub	Display: "Er 100"		
code	10	0	Content: Motor overloaded		
Cause		Diagno	osis	Solution	
Load too h	neavy		f actual load exceeds um value allowed	Decrease load Adjust limit values	
mechanical			for mechanical vibration from ne system	Adjust gain value of control loop Increase duration time for acceleration and deceleration	
Motor or encoder cable wiring error		Verify r	motor and encoder wiring	Reconnect wiring Replace motor and encoder cable	
Holding bi engaged	rake	Verify holding brake terminal voltage		Cut off holding brake	

Error code Main Sub Display: "Er 101" 10 1 Content: Driver overloaded				
		1	Content: Driver overloaded	
Cause		Diagno	osis	Solution
Motor power cable wiring error		UVW terminals wiring error		Make sure motor power cable wiring connection is correct
Motor not		Motor	current is too high	Motor rated current is higher than driver rated current. Please change to a driver with higher rated current.

Error	Main	Sub	Display: "Er 102"		
code	10	2	Content: Motor rotor blocked		
Cause Diagnosis		osis	Solution		
Motor rotor blocked		Look fo	or mechanical blockages	Check the machinery	
Motor rotor blocking time threshold value too low		Verify	value of Pr6.57	Adjust value of Pr6.57	

			000. Manage 01 220 20 1 760 00.10			
Error	Main	Sub	Display: "Er 120"			
code	12	0	Content: Regenerative resistor overvoltage			
Cause			Diagnosis	Solution		
Regenera	tive ene	rgy	Verify if velocity is too	Decrease motor rotational velocity;		
exceeded capacity of		/ of	high	2. Decrease load inertia;		
regenerati	ive resis	tor	2. Verify if load is too large	3. Add an external regenerative resistor;		
Power sur	Power supply voltage		Verify if power supply	Decrease power supply voltage		
too high			voltage is within the rated	2. Increase regeneration resistance		
			range.	value(add external regenerative resistor)		
			2. Interval regenerative			
			resistor value is too low			
Unstable	Unstable power supply		Verify if power supply	Add a surge suppressor to main power		
voltage			voltage is stable	supply.		
Regenerative energy		rgy	/	1. Add an external regenerative resistor;		
discharge	circuit			2. Replace driver		
damaged						

Error	Main	Sub	Display: "Er 121"	
code	12	1	Content: Holding brake error	
Cause Dia			Diagnosis	Solution
Holding	brake	circuit	Regenerative resistor disconnected	Replace regenerative resistor
damaged			Holding brake IGBT damaged	Replace driver

Error	Main	Sub	Display: "Er 122"			
code	12	2	Content: Regenerative resistor value too low			
Cause			Diagnosis	Solution		
External regenerative resistor value is less than the minimum value allowed by the drive			/	Replace the regenerative resistor with the right resistance value which meets the specification of the driver		

Error	Main	Sub	Display: "Er 150"			
code	15	0	Content: Encoder disconnected			
Cause			Diagnosis Solution			
Encoder of disconnection			Verify encoder cable connection	Make sure encoder cable properly connected		
Encoder of	able wir	ing error	Verify if encoder wiring is correct Reconnect encoder wiring			
Encoder damaged			/	Replace motor		
Encoder measuring circuit damaged			/ Replace driver			

Error	Main	Sub	Display: "Er 151"		
code 15 1 Content: Encoder communication error				error	
Cause			Diagnosis	Solution	
Encoder v	vire shie	lding	Verify if encoder cable has	Replace with standard encoder	
layer is missing			shielding layer	cable	
Encoder cable wiring error			Verify if encoder wiring is correct	Reconnect encoder wiring	
Encoder d	lamaged	t	/	Replace motor	

Error	Main	Sub	Display: "Er 152"			
code	15	2	Content: Encoder initial position e	Content: Encoder initial position error		
Cause			Diagnosis	Solution		
Communication data abnormal			1. Verify if encoder power supply voltage is DC5V ± 5%; 2. Verify if encoder cable and shielded ayer is not damaged; 3. Verify if encoder cable is close to high-powered power supply cable	Make sure encoder power supply voltage is stable Make sure encoder cable is not damaged. Make sure encoder cable shielded layer is grounded to frame Make sure encoder cable is away from high-powered power supply cable		
Encoder damaged		d	/	Replace motor		
Encoder circuit da	measuri amaged	ng	1	Replace driver		

Error	Main	Sub	Display: " <mark>Er 153</mark> "		
code	15	3	Content: Multiturn end	coder error	
Cause			Diagnosis	Solution	
Initial use			Origin calibration not performed	Perform origin positioning and multiturn position initialization, calibrate the origin of coordinate system.	
Encoder without multiturn absolute function used			Verify if encoder has multiturn absolute function	 Replace the motor with a multiturn absolute encoder. Set Pr0.15 = 0 to deactivate multiturn absolute function. 	
Low battery power		er	Replace battery and restart driver to clear alarm	Replace battery	
Battery has no power or has been dismantled			Alarm not cleared after replacing battery and restart	Absolute position lost. Return to origin and perform multiturn initialization, calibrate the origin of coordinate system	

Error	Main	Sub	Display: "Er 154"			
code	15	4	Content: Encoder parameter settings error			
Cause			Diagnosis	Solution		
Absolute encoder mode			Verify if encoder has multi-turn	Modify absolute encoder mode		
is incorrectly set.			absolute value function.	settings		

Error	Main	Sub	Display: " <mark>Er 155</mark> "			
code	15	5	Content: Encoder data overflow			
Cause			Diagnosis Solution			
Encode	r data ove	erflow	Verify if encoder is not damaged	Initialize multiturn data		
Absolute value applications, motor rotates in one direction			Verify if encoder is not damaged	Adjust absolute value application mode, set to turntable mode		

Error	Main	Sub	Display: "Er 156"	
code	15	6	Content: Encoder overheated	
Cause			Diagnosis	Solution
The end	The encoder		Verify if motor temperature is	Paduas anadar tamparatura
temperature is too high.		o high.	too high	Reduce encoder temperature.

Error	Main	Sub	Display: "Er 157"		
code	15	7	Content: Encoder counter error		
Cause			Diagnosis Solution		
Encode	r data ove	erflow	Verify if encoder is not damaged	Initialize multiturn data	
Absolute value applications, motor rotates in one direction			Verify if encoder is not damaged	Adjust absolute value application mode, set to turntable mode	

		Sı	np	Display: "Er 170"		
code	17		0	Content: Encoder data error		
Cause			Diag	nosis	Solution	
Communication data abnormal			1. Verify if encoder power supply voltage is DC5V±5%; 2. Verify if encoder cable and shielded layer is not damaged; 3. Verify if encoder cable is close to high-powered power supply cable		 Make sure encoder power supply voltage is stable Make sure encoder cable is not damaged. Make sure encoder cable shielded layer is grounded to frame Make sure encoder cable is away from high-powered power supply cable 	
Encoder damaged		/		Replace motor		
Encoder circuit da	measurin amaged	ıg		1	Replace driver	

Error	Main	Sub	Display: "Er 171"		
code	17 1		Content: Encoder parameter initialization error		
Cause		Diag	nosis	Solution	
	river and motor of matched Verif		y driver and motor models.	Replace with matching driver and motor	
Error while getting parameters from encoder		2. Ve insula	rify if encoder cable is standard. rify if encoder has no peeled ator, broken connection or oper contact.	Use standard encoder cable, verify the connection of both sides of driver and motor, change encoder cable if necessary	

Error	Main	Sub	Display: "Er 180"				
code	18	0	Content: Excessive position deviation				
Cause			Diagnosis	Solution			
	Improper position deviation settings		Verify if value of Pr_014 is too low	Increase value of Pr_014			
Position ga	in settir	ng too	Verify if values of Pr1.00 & Pr1.05 are	Increase values of Pr1.00 &			
low			too low	Pr1.05			
Torque limi	t too lov	V	Verify if values of Pr0.13 & Pr5.22 are too low	Increase values of Pr0.13 & Pr5.22			
Excessive external load			Verify if acceleration and deceleration duration time is too low. Verify if rotational velocity is too high Verify if load is too large	Increase duration time for acceleration and deceleration Decrease rotational velocity Decrease load			

Error	Main	Sub	Display: "Er 181"				
code	18	1	Content: Excessive velocity deviation				
Cause			Diagnosis	Solution			
Deviation velocity ar too great			S Verify if value of Pr6.02 is too low	 Increase value of Pr6.02; Set Pr6.02 to 0, position error detection off. 			
Acceleration and deceleration duration time for set velocity is too low			Verify if value of Pr3.12 and 1. Increase value of Pr3.12, Pr3.				

Error	Main	Sub	Display: "Er 190"			
code	19	0	Content: Vibration too strong			
Cause	Cause		Diagnosis Solution			
Dogonon	D		Mechanical stiffness is too	Reduce mechanical stiffness or use		
Resonance			high, resonance occurs	filter		
Current loop gain too		too	Verify current loop gain value	Reduce current loop gain		
large						

|--|

code	19 1 C		С	Content: Excessive hybrid position deviation			
Cause				Diagnosis Solution			
Driver UVW terminal output single phasing or wiring error				Verify if UVW terminal wiring connection is right	Make sure UVW terminals are correctly connected to UVW of motor change motor power cable.		
Motor roto	Motor rotor blocked			Look for mechanical blockages	Check the machinery		
Driver stiff	Driver stiffness too low			Verify if position loop and velocity loop gain is too low	Increase position loop and velocity loop gain		
Full closed loop position deviation (Deviation between external encoder feedback position and motor feedback position) exceeds Pr0.33			•	Verify if Pr0.33 is set too low	Increase Pr0.33 set value accordingly but please aware that doing so might cause the position deviation to be higher.		

Error code Main Sub Display: "Er 1A0" 1A 0 Content: Overspeed		Sub	Display: "Er 1A0"			
Cause		Diagno	Diagnosis Solution			
Motor velo exceeded speed limi (Pr3.21)	first	2. Verii is too h 3. Verii 4. Verii freque	fy if velocity command is too high; fy if simulated velocity command voltage high; fy if parameter value of Pr3.21 is too low; fy if input frequency and division hcy coefficient of pulse train is proper; fy if encoder is wired correctly	1. Adjust velocity input command; 2. Increase Pr3.21 value; 3. Adjust pulse train input frequency and division frequency coefficient; 4. Verify encoder wiring;		

Error	Main	Sub	Display: "Er 1A1"			
code	1A	1	Content: Velocity out of control			
Cause Diagno		Diagno	osis	Solution		
		•	encoder phase sequence; Verify if UVW	Reconnect UVW if wrongly		
out of control, cable is Excessive		cable	s connected to the right terminal	connected. If still remains unsolved, please contact		
velocity er				technical support.		

Error	Main	Sub	Display: "Er 1b0"		
code	1b	0	Content: Bus input signal dithering		
Cause			Diagnosis	Solution	
Controller synchronization dithering			/	Increase alarm threshold value	

Error	Main	Sub	Display: "Er 1b1"		
code	1b	1	Content: Incorrect electronic gear ratio		
Cause			Diagnosis Solution		
Values out of range			Numerator or denominator is zero/Set values out of range	Reduce number of pulses per revolution	

Error	Main	Sub	Display: "Er 1b3"		
code	1b	3	Content: External encoder frequency divider parameter error		
Cause		Diagnosis		Solution	
Values out of range				or denominator values out of	Reduce number of pulses per revolution

Error	Main	Sub	Display: "Er 1b4"		
code	1b	4	Content: Excessive synchronous position mode command		
Cause	Cause		Diagnosis Solution		
Values out of range			Numerator or denominator is zero/Set values out of range	Reduce number of pulses per revolution	

Error	Main	Sub	Display: "Er 1c0"	
code	1c	0	Content: Both STO failed	
Cause			Diagnosis	Solution
Both STC	Both STO input signals		Verify if STO power supply is normal	Verify 24V STO power supply and power cable connection
valid			Disconnect switch connected to STO	Close switch

Error	Main	Sub	Display: "Er 1c1"	
code	1c	1	Content: 1 st STO failed	
Cause			Diagnosis	Solution
1 st STO input signal			Verify if STO power supply is normal	Verify 24V STO power supply and power cable connection
valid	•		Disconnect switch connected to STO	Close switch

Error	Main	Sub	Display: "Er 1c2"		
code	1c	2	Content: 2 nd STO failed		
Cause			Diagnosis Solution		
nd			Verify if STO power supply	Verify 24V STO power supply and power	
2 nd STO input signal		nal	is normal	cable connection	
valid			Disconnect switch Close switch		
			connected to STO		

Error	Main	Sub	Display: "Er 210"	
code	21	0	Content: I/O input interface assig	nment error
Cause			Diagnosis	Solution
Input signal assigned with two or more functions.			Verify values of Pr4.00-Pr4.09, Pr4.44-4.47	Set proper values for Pr4.00-Pr4.09, Pr4.44-4.47

Error	Main	Sub	Display: "Er 211" Content: I/O input interface function assignment error		
code	21	1			
Cause			Diagnosis	Solution	
Input signal assignment		ignment	Verify values of Pr4.00-Pr4.09,	Set proper values for	
error			Pr4.44-4.47	Pr4.00-Pr4.09, Pr4.44-4.47	

Error	Main	Sub	Display: "Er 212"	
code	21	2	Content: I/O output interface function assignment error	
Cause	Cause		Diagnosis	Solution
	Input signal assigned with		Verify values of Pr4.10-Pr4.15	Set proper values for Pr4.10-Pr4.15
two or more functions.		ons.		
Input signa	al not as	ssigned	Verify values of Pr4.10-Pr4.15	Set proper values for Pr4.10-Pr4.15

Error	Main	Sub	Display: "Er 240" Content: CRC correction error during EEPROM parameter saving			
code	24	0				
Cause			Diagnosis	Solution		
L1, L2 terminal voltage too low			Verify if L1, L2 terminal voltage too low	Make sure L1, L2 terminal voltage is within recommended range		
Parameter saving anomaly			Save parameter again and restart	Save parameter again		

Error	Main	Sub	Display: "Er 250"			
code	25	0	Content: Gantry deviation error			
Cause			Diagnosis	Solution		
			Verify if both drivers share the same set of parameters of both drivers same set of parameters			
Excessive deviation	Gantry	drivers	Verify if control cable of the drivers are properly connected	Connect control cable properly		
deviation			Verify if gantry communication Connect communication cable cable is connected properly properly			

Error	Main	Sub	Display: "Er 251"		
code	25	1	Content: Gantry communication error		
Cause			Diagnosis	Solution	
Gantry communication			Verify if gantry communication	Connect communication cable	
data error			cable is connected properly properly		

Error	Main	Sub	Display: "Er 260"	
code	26	0	Content: Positive/Negative position limit triggered under non-homing	
Cause	Cause		Diagnosis	Solution
Positive/n	Positive/negative		Verify position limit signal	
position li	mit trigg	jered		

Error	Main	Sub	Display: "Er 270" "Er 272"	
code	27	0~2	Error description: Analog input	1-3 out of range
Cause			Diagnosis	Solution
Analog value out of range		of range	Verify if analog input value is out of range	Adjust analog input voltage

Error	Main	Sub	Display: "Er 280"		
code	28	0	Error description: Output pulse frequency too high		
Cause			Diagnosis Solution		
Frequenc	y divide	d pulse	Verify if motor rotational speed and	Reduce the number of	
output exceeds 1MHz			the number of frequency divided frequency divided pulse		
·			pulse output are too high	or reduce rotational speed	

Error	Main	Sub	Display: "Er 290"		
code	29	0	Error description: Control mode not match in full closed loop mode		
Cause			Diagnosis	Solution	
Control mode is not		not	Verify if Pr0.01 is set to 0	Make sure Pr0.01 is set to 0 -	
position mode when full				Position mode	
closed loop mode is on					

Error	Main	Sub	Display: "Er 291"	
code	29	1	Error description: Encoder mode not match in full closed loop mode	
Cause	Cause		Diagnosis	Solution
Encoder mode not match		ot match	Only ABZ encoder is supported for	For external ABZ encoder,
in full closed loop mode		mode	the moment being	please set Pr0.31 = 0.

			0361	Illialitiat of ELO-EC P AC Servo		
Error	Main	Sub	Display: "Er 550" "Er 553"			
code	55	0~3	Error description: Encoder mode no	Error description: Encoder mode not match in full closed loop mode		
Cause			Diagnosis	Solution		
Er550: Ex	cternal A	ABZ	Verify if encoder cable is connected	1. Make sure encoder cable		
encoder o	disconne	ected	properly	connection is tight,;		
Er551: Ex	ternal e	encoder		2. Change encoder cable.;		
Phase A	disconn	ected		3. External encoder cable		
Er552: Ex	ternal e	encoder		needs to be shielded.		
Phase B disconnected						
Er553: Ex	Er553: External encoder					
Phase Z	disconn	ected				

Error	Main	Sub	Display: " Er 570"	
code	57	0	Error description: Forced alarm	n input valid
Cause	Cause		Diagnosis	Solution
Forced alarm input		ut	Verify forced alarm input signal	Verify if the input wiring connection is
signal occurred				correct

Error	Main	Sub	Display: "Er 5F0"		
code	5F	0	Content: Motor model no. detection error		
Cause			Diagnosis	Solution	
Automatically detected		tected		Please contact our technical	
motor doesn't match		atch	/	support	
set motor	•				

Error	Main	Sub	Display: "Er 5F1"		
code	5F	1	Error description: Driver power module detection error		
Cause			Diagnosis	Solution	
Driver power rating not		ng not	Restart driver	Please contact our technical	
within range.				support	

Error	Main	Sub	Display: "Er 600"	
code 60 0		0	Error description: Main loop interrupted timeout	
Cause			Diagnosis	Solution
The market and the line of			Check for interference from	Ground driver and motor to reduce
The motor control loop		поор	devices releasing	interference
calculation time overflow			electromagnetic field	
overnow			Restart driver	Replace driver

Error Main Sub		Sub	Display: "Er 601"		
code	60	1	Error description: Velocity loop interrupted timeout		
Cause			Diagnosis	Solution	
Motor cor calculatio overflow		р	Verify if encoder connection is and that the encoder cable is too not long (more than 20 meters)	Replace encoder cable if necessary	
overnow			Restart driver	Replace the drive with a new one	

Error	Main	Sub	Display: "Er 700"		
code	70	0	Error description: Encryption error		
Cause			Diagnosis	Solution	
Encryption error during		during	Restart driver	Please contact our technical	
initialization upon		1		support	
power-on					

Error	Error Main Sub		Display: "Er 890"		
code	89	0	Error description: Homing error		
Cause			Diagnosis	Solution	
1. Excess	homin	9	1. Verify if homing velocity is too	Set an optimal homing velocity	
velocity			high	2. Make sure sensor signal edge is	
2. Homing	g mode	is	2. Verify if homing mode is set	consistent.	
different f	different from given		correctly		
signal	signal		3. Verify if sensor signal edge is		
3. Sensor	3. Sensor signal edge		consistent		
inconsiste	inconsistent				
			1. Homing acceleration/	1. If electronic gear ratio cannot be	
Inconsistent origin		n	deceleration is set too low	changed, please set a suitable	
		11	2. Electronic gear ratio is low	609A.	
อเสเนอ	status		which causes acceleration/	2. Increase electronic gear ratio	
			deceleration to be too low		

Error	Main	Sub	Display: "Er 920"		
code	92	0	Error description: External encoder parameter initialization error		
Cause			Diagnosis	Solution	
F.,		·or	Verify if Pr0.37 set value is out of	Modify Pr0.37 set value, please use	
Encoder parameter Pr0.37 setting error			range	default value and see if the error	
F10.37 SE	tung en	Oi		still persists.	

8.4 Alarm clearing

8.4.1 Servo Drive Alarm

For alarm can be cleared, There are 3 method.

Method 1:

1. By setting bit 7 of 6040h to 1, switches state machine from fault to initialization completion, No fault(Switch on disabled).

Method 2:

Use auxiliary function "AF_ACL"

1. Press M to select auxiliary function , Press SET to enter into "AF_ACL" , Press and hold to clear the alarm

Method 3:

Set IO input function as Alarm clear input " (A-CLR)", refer to switch input interface connection to clear the alarm.

8.5 EtherCAT Communication Alarm

EtherCAT communication related alarms are erasable and will not be recorded in alarm history.

Clearing EtherCAT communication alarm is similar to clearing servo driver alarm. Please clear the alarm before switching to 402 machine state.

EtherCAT communication alarm however, relies on register clearance from the main station. Can be solved according to following steps:

- 1. Set bit 4 of ESC control register 0x120 (error responder) to 1.
- 2. The communication alarm can be cleared until the feedback of the ESC status code register 0x134~0x135 is 0.
- 3. By setting bit 7 of 6040h to 1, switches state machine from fault to initialization completion, No fault(Switch on disabled).

Error	Main	Sub	Display: "Er 73A"				
code	73	Α	Error description: SyncManager2 lost				
Cause			Diagnosis	Solution			
Poor master				Increase the alarm			
performa	nce			threshold			
Single-unit drive has			Is it a single unit or multiple units together	Switch drive			
problem			in the network				
interfere			Check the grounding and network wiring	Replace the network			
			quality	cable			

Error	Main	Sub	Display: "Er 73b"					
code	73	В	Error description: SYNC0 lost					
Cause			Diagnosis	Solution				
Poor master				Increase threshold value				
performance				limit				
Single-unit drive has			Is it a single unit or multiple units together	Switch drive				
problem			in the network					
interfere			Check the grounding and network wiring	Replace the network				
			quality	cable				

Error	Main	Sub	Display: "Er 73c"			
code	73	С	Error description: Excessive	e Distributed Clock error		
Cause			Diagnosis	Solution		
Poor master device			Increase threshold value limit			
performar	nce					
Single-unit drive has problem			Is it a single unit or multiple units together in the network	Replace driver		
Interference			Check the grounding and network wiring quality	Replace network cable		

Error	Main	Sub	Display: "Er 801"		
code	80	1	Error description: Unknown communication error		
Cause			EtherCAT state machine transition failed		
The stat	us of th	e error	All ESM status		
can be	detected	t			
Network	port LE	ED	Blinking		
The requit status			The current state is maintained below the safe operation, and the		
The result status		5	operation state is switched to the safe operation state		
Calution			Verify network connection and master device EtherCAT state machine		
Solution	Solution		transition order		

Error	Main	Sub	Display: "Er 802"		
code	80	2	Error description: Memory overflow		
Cause			CPU failed to request memory		
The stat	tus of th	e error	All ESM status		
can be	detected	t			
Network	Network port LED		ON		
The manufacture		_	The current state is maintained below the safe operation, and the		
The result status		S	operation state is switched to the safe operation state		
Solution			Verify if EL8-EC hardware is faulty		

Error	Main	Sub	Display: "Er 803"		
code	80	3	Error description: RAM out of bound		
Cause			EtherCAT state machine memory address access request from master		
			device is out of bound		
The stat	us of th	e error	All communication status		
can be detected		k			
Network port LED		D	None		
The result status		S	NO		
Solution	Solution		n Verify master device configuration or replace master device		

			OSCI Mandat Of EEO EO 1 AO SCI TO	
Error	Main	Sub	Display: "Er 805"	
code	80	5	Error description: FOE firmware upgrade failed	
Cause			Firmware burn error	
The stat	The status of the error		BOOT	
can be detected		t		
Network port LED		ED .	None	
The result status		S	Remain in the detection state	
Solution			Replace firmware/driver	

Error	Main	Sub	Display: "Er 806"	
code	80	6	Error description: Saved ESI file does not match driver firmware	
Cause	Cause		ESI file does not match driver firmware	
The stat	us of th	e error	INIT	
can be detected				
Network port LED		D	None	
The result status		S	Remain in the detection state	
Solution			Burn matching firmware to driver	

Error	Main	Sub	Display: "Er 811"	
code	81	1	Error description: Invalid EtherCAT transition request	
Cause			Driver received unconvertible request from EtherCAT state machine	
The stat	us of th	e error	All ESM Status	
can be	detected	t		
Network port LED		D	Blinking	
The requite status			The current state is maintained below the safe operation, and the	
The result status		S	operation state is switched to the safe operation state	
Solution			Verify if the transition information from master device is correct	

Error	Main	Sub	Display: "Er 812"		
code	81	2	Error description: Unknown EtherCAT state machine transition request		
Cause			Driver receives a transition request other than states of the EtherCAT		
			state machine		
The stat	us of th	e error	All ESM Status		
can be detected					
Network port LED		Đ	Blinking		
The regult status			The current state is maintained below the safe operation, and the		
The result status		5	operation state is switched to the safe operation state		
Solution			Verify transition information from master device		

			oser mandat of EEO EO 1 AO Servo	
Error	Main	Sub	Display: "Er 813"	
code	81	3	Error description: Protection request from boot state	
Cause	Cause		Driver receives a transition request to boot state	
The status of the error		e error	Initialize the conversion to a boot	
can be detected		t		
Network port LED		D	Flickering	
The result status		S	initialization	
Solution		Solution Verify if driver software version supports this state transition		

Error	Main	Sub	Display: "Er 814"		
code	81	4	Error description: Invalid firmware		
Cause	Cause		Firmware not matched with driver		
The status of the error		e error	BOOT/INIT		
can be detected		t			
Network port LED		ED	None		
The result status		S	Keeping in the detection status		
Solution			Return driver to supplier to update firmware		

Error	Main	Sub	Display: "Er 815"
code	81	5	Error description: Invalid mailbox configuration under boot state
Cause			Boot state action not supported under current configuration
The status of the error			Initialize the conversion to a boot
can be	detected	ł	
Network	Network port LED		Blinking
The result status		S	Initialization
Solution			Verify if EL8-EC software version supports action under this state.

Error	Main	Sub	Display: "Er 816"
code	81	6	Error description: Pre-Op status is invalid for the mailbox configuration
Cause			The synchronization manager configuration under Pre-Op is invalid
The status of the error			pre-operation
can be	detected	t	
Network port LED			Blinking
The result status			initialization
Solution			Verify if XML file version is consistent with software version
Solution	Solution		2. EtherCAT slave controller error, please contact technical support

			0001 manaat 01 220 20 11 710 001 10
Error	Main	Sub	Display: "Er 817"
code	81	7	Error description: Invalid SyncManager configuration
Cause			Synchronization manager configuration is invalid
The status of the error			Pre-op above
can be	detected	t	
Network	port LE	D	Single flash
The result status			Pre-op
Solution			Verify master device configuration/ESI file version

Error	Main	Sub	Display: "Er 818"
code	81	8	Error description: No valid input data
Cause			The input data is not updated for more than 1 second
The status of the error			All ESM status
can be detected			
Network port LED			Double flashing
The result status			The current state is maintained below the safe operation, and the operation state is switched to the safe operation state
Solution	Colution		Verify if TxPDO is valid
Solution			Verify master device synchronization settings

Error	Main	Sub	Display: "Er 819"
code	81	9	Error description: No valid output data
Cause			Output data is not updated for more than 1 second
The stat	tus of th	e error	All ESM status
can be	detected	t	
Network	port LE	ED	Double flash
The requit status			The current state is maintained below the safe operation, and the
The res	The result status		operation state is switched to the safe operation state
Colution	Solution		Verify if RxPDO is valid
Solution			Verify master device synchronization settings

Error	Main	Sub	Display: "Er 81A"
code	81	Α	Error description: Synchronization error
Cause			RxPDO and DC update order failed or one of them is not updated in sync
The stat	us of th	e error	All ESM status
can be	detected	k	
Network	port LE	D	Single flash
The real	ult ototu	0	The current state is maintained below the safe operation, and the
The resi	The result status		operation state is switched to the safe operation state
Colution	O a losti a ra		Verify if PXPDO is valid
Solution			2. Verify master device synchronization settings

			OSCI Mandat of EEO EO 1 AO SCI VO
Error	Main	Sub	Display: "Er 81b"
	81	b	Error description:SyncManager2 watchdog timer timeout
Cause			The RxPDO update timeout in operational state
The status of the error			Operation
can be	detected	t	
Network port LED			Double flash
The result status			Safe operation
Colution			Verify if EL8-EC network is connected
Solution			2. Verify RxPDO update time

Error	Main	Sub	Display: "Er 81c"		
code	81	С	Error description: Invalid SyncManager type		
Cause			Synchronization Manager configuration types other than the following:		
			1. Mailbox output		
			2. Mailbox input		
			3. Process data output		
			4. Process data input		
The stat	us of th	e error	Pre-operation		
can be	detected	i			
Network port LED			Blinking		
The result status			Initialize		
Solution	olution Verify if XML file version is consistent with software version				

Error	Main	Sub	Display: "Er 81d"		
code	81	d	Error description: Invalid output configuration		
Cause			Process data output synchronization manager configuration is invalid		
The status of the error			Pre-operation		
can be detected					
Network port LED		D	Blinking		
The result status		S	Initialize		
Solution			Verify EL8-EC synchronization manager configuration		
			2. Verify if XML file version is consistent with software version		

Error	Main	Sub	Display: "Er 81E"	
code	81	Е	Error description: Invalid input configuration	
Cause			Process data input synchronization manager configuration is invalid	
The status of the error			Pre-operation	
can be	detected	t t		
Network port LED		D	Blinking	
The result status			Initialize	
Solution			Verify EL8-EC synchronization manager configuration	
			2. Verify if XML file version is consistent with software version	

			OSCI Mandat Of EEO EO 1 AO SCI VO
Error	Main	Sub	Display: "Er 821"
code	82	1	Error description: Waiting for EtherCAT state machine Init state
Cause			Driver waiting for master device to send Init request
The stat	tus of th	e error	All ESM status
can be	detected	t	
Network	port LE	D	Blinking
The result status			Keeping the current state
Solution			Verify transition request sent from master device

Error	Main	Sub	Display: "Er 822"
code	82	2	Error description: Waiting for the EtherCAT state machine Pre-Op state
Cause			Driver waiting for master device to send Pre-Op request
The stat	us of th	e error	Safe operation, operation
can be	detected	t	
Network	port LE	D	Blinking
The result status			Keeping the current state
Solution			Verify transition request sent from master device

Error	Main	Sub	Display: "Er 823"
code	82	3	Error description: Waiting for master device for Safe-Op request
Cause			Process data output synchronization manager configuration is invalid
The stat	tus of th	e error	Operation
can be d	detected	t	
Network	port LE	D	Blinking
The result status			Keeping the current state
Solution			Verify transition request sent from master device

Error	Main	Sub	Display: "Er 824"
code	82	4	Error description: Invalid process data input mapping
Cause			TxPDO is configured with non-mappable objects
The status of the error			Safe operation
can be detected			
Network	port LE	D	Blinking
The result status			Pre-operation
Solution			Reconfigure the TxPDO mapping object

Error	Main	Sub	Display: "Er 825"
code	82	5	Error description: Invalid process data output mapping
Cause			RxPDO is configured with non-mappable objects
The status of the error			Safe operation
can be detected			
Network	port LE	ED .	Blinking
The result status			Pre-operation
Solution			Reconfigure the RxPDO mapping object

Error	Main	Sub	Display: "Er 828"
code	82	8	Error description: Sync mode not supported
Cause			Sync mode is not supported in the current configuration
The stat	us of th	e error	Safe operation
can be	detected	t	
Network	port LE	ED	Single flash
The result status			Pre-operation
Solution			Verify EL8-EC software version Verify XML version

Error	Main	Sub	Display: "Er 82b"
code	82	b	Error description: Invalid inputs and outputs
Cause			No RxPDO and TxPDO updates for more than 1 second
The status of the error			All ESM status
can be	detected	t	
Network port LED			Blinking
The result status			The current state is maintained below the safe operation, and the operation state is switched to the safe operation state
Solution			Verify if current RxPDO and TxPDO are invalid Verify master device synchronization settings

Error	Main	Sub	Display: "Er 82c"
code	82	С	Error description: Fatal synchronization error
Cause			DC watchdog timer timeout
The status of the error			Safe operation, operation
can be detected			
Network port LED			Double flash
The result status			Safe operation
Solution			Verify if EL8-EC hardware is faulty Verify DC setting and delay

Error	Main	Sub	Display: "Er 82d"
code	82	d	Error description: No synchronization error
Cause			Synchronization is invalid
The stat	us of th	e error	operation
can be	detected	t	
Network	port LE	ED	Single flash
The result status			Safe operation
Solution			Verify if "fatal synchronization error" has occurred.
	Solution		Verify master device synchronization settings

Error	Main	Sub	Display: "Er 82E"	
code	82	Е	Error description: Synchronization cycle time is too short	
Cause			Master device synchronization cycle time is set to less than 125	
			microseconds	
The stat	us of th	e error	operation	
can be o	detected	k		
Network	port LE	D	Single flash	
The result status			e result status Pre-operation	
Solution			Verify master device synchronization cycle time	

Error	Main	Sub	Display: "Er 830"
code	83	0	Error description: Invalid Distributed Clock synchronization settings
Cause			Synchronization settings in sync mode are not valid
The status of the error			Safe operation
can be detected			
Network port LED			Blinking
The result status			Pre-operation
Solution			Verify master device synchronization settings

Error	Main	Sub	Display: "Er 832"
code	83	2	Error description: Distribution Clock phase-locked loop failure
Cause			Distribution Clock phase-locked loop setting is invalid
The status of the error			Safe operation, operation
can be detected			
Network port LED			Single flash
The result status			Safe operation
Solution			Verify master device Distribution Clock settings and network transmission delay

Error	Main	Sub	Display: "Er 835"
code	83	5	Error description: Distribution Clock cycle time is invalid
Cause			Set synchronization cycle time is not proportional to drive position loop
The status of the error			Safe operation
can be	detected	t	
Network	port LE	ED .	Flickering
The result status			Pre-operation
Solution			Refer to user manual to set a reasonable synchronization cycle time.

Error	Main	Sub	Display: "Er 836"
code	83	6	Error description: Invalid Distribution Clock synchronization cycle time
Cause			The synchronization cycle time setting is not as the following
			1:125us 2:250us 3:500us
			4 : 750us 5 : 1000us 6 : 2000us
			7:4000us
The stat	us of th	e error	Safe operation
can be o	detected	t	
Network port LED			Single flash
The result status		S	Pre-operation
Solution			Verify master device synchronization cycle time

Error	Main	Sub	Display: "Er 850"
code	85	0	Error description: EEPROM is inaccessible
Cause			EtherCAT slave controller failed to access EEPROM
The status of the error			All ESM status
can be detected			
Network port LED			Flickering
The result status			Keeping the current state
Solution			Verify if EL8-EC hardware is faulty
Solution			2. Verify if master device released access

Error	Main	Sub	Display: "Er 851"
code	85	1	Error description: EEPROM error
Cause			EEPROM operation of EtherCAT slave controller failed
The status of the error			All ESM status
can be detected			
Network port LED			Flickering
The result status			Keeping the current state
Solution			Verify if master device released access

Error	Main	Sub	Display: "Er 852"
code	85	2	Error description: Hardware is not ready
Cause			Data communication lost
The status of the error			All ESM status
can be detected			
Network port LED			ON
The result status			Keeping the current state
Solution			Verify if EL8-EC hardware is faulty

Error	Main	Sub	Display: "Er 860"
code	86	0	Error description: EtherCAT frame lost per unit time exceeds limit
Cause			EtherCAT frame lost per unit time exceeds the setting in 2635-00h
The status of the error			All states
can be detected			
Network port LED			None
The result status			Keeping the detection state
Solution			Change to network cable with higher bandwidth / Replace driver

Error	Main	Sub	Display: "Er 870"
code	87	0	Error description: Driver can't be enabled under current control mode
Cause			Enable driver under unsupported mode
The status of the error			All status
can be detected			
Network port LED		D	None
The result status			Maintain status
Solution			Switch to the correct control mode

Contact Us

Leadshine Technology Co., Ltd.

Headquarters

Address:

15-20/F, Block B, Nanshan I Valley, No.3157, Nanshan District, Shenzhen City, Guangdong Province, China

Tel:

+86 755 26411692

Fax:

+86 755 26402718

Website:

www.leadshine.com

Emails:

sales@leadshine.com

Leadshine Global Retailers Network

Get in touch with us or any of your local Leadshine certified retailers by visiting our global website.

Technical Support

Tel: 86-755-2641-8447

86-755-2641-8774 (Asia, Australia, Africa) 86-755-2665-5136 (North and South America)

86-755-8654-2465 (Europe)

Fax: 86-755-2640-2718
Email: tech@leadshine.com

Sales Hot Line

Tel: 86-755-2641-7674 (Asia, Australia, Africa) 86-755-2641-7617 (North and South America)

86-755-2640-9254 (Europe) **Email:** sales@leadshine.com

Leadshine Overseas

Leadshine America, Inc.

North America

Office

Address:

26050 Towne

Centre Dr.

Foothill

Ranch California

United States

Tel:

1-949-608-7270

-ax:

1-949-638-7298

Website:

www.leadshineus

a.com

Emails:

sales@leadshin eusa.com